In vitro permeability of silver nanoparticles through porcine oromucosal membrane.

Colloids Surf B Biointerfaces

Clinical Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, Via della Pietà 19, 1-34100 Trieste, Italy. Electronic address:

Published: August 2015

AI Article Synopsis

  • Silver nanoparticles (AgNPs) are commonly found in food and hygiene products, leading to potential contact with human oral mucosa.
  • A study using porcine buccal mucosa in diffusion cells showed that both AgNPs and soluble silver ions have similar absorption rates through the mucosa (6.8 and 5.2 ng cm(-2) h(-1), respectively).
  • The findings suggest that while silver can permeate the oral barrier, most absorption is likely due to silver ions, highlighting the need for more research in risk assessments.

Article Abstract

Silver nanoparticles (AgNPs) can come in contact with human oral mucosa due to their wide use in food industry and hygiene devices. We evaluate transmucosal absorption of 19 nm AgNPs using excised porcine buccal mucosa applied on Franz diffusion cells. Two donor solutions were used: one containing AgNPs (0.5 g/L) and one derived from the ultrafiltration of the former and containing only Ag in its soluble form. Experiments were carried out separately for 4 h. Silver flux permeation was demonstrated through oral mucosa, showing similar values for AgNPs (6.8±4.5 ng cm(-2) h(-1)) and Ag ions (5.2±4.3 ng cm(-2) h(-1)). Our study demonstrates that silver can permeate the oromucosal barrier and that absorption is substantially due to Ag ions, since no permeation difference was found using the two solutions. Mucosal absorption has to be considered in further risk assessment studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2015.04.061DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
oral mucosa
8
cm-2 h-1
8
vitro permeability
4
silver
4
permeability silver
4
nanoparticles porcine
4
porcine oromucosal
4
oromucosal membrane
4
membrane silver
4

Similar Publications

Background: Dental caries is a prevalent oral health issue primarily caused by Streptococcus mutans, a bacterium that contributes to tooth decay. Antimicrobial agents in dentifrices are often utilized to target these pathogens. Nano silver fluoride (NSF) has emerged as a potential antimicrobial agent due to its ability to inhibit bacterial growth.

View Article and Find Full Text PDF

Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).

View Article and Find Full Text PDF

Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells.

Int J Mol Sci

January 2025

Centro de Investigación y Desarrollo de Nanomedicinas (CIDeN), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876 Bernal, Argentina.

The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate ( extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.

View Article and Find Full Text PDF

Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups.

View Article and Find Full Text PDF

Biosorbents have demonstrated considerable potential for the remediation of metals in aqueous environments. An aqueous extract of L. (EiE) and its extract-coated silver nanoparticles have been prepared and employed for the removal of iron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!