The early transcriptional response and subsequent induction of anchorage-independent growth after exposure to particles of high Z and energy (HZE) as well as γ-rays were examined in human bronchial epithelial cells (HBEC3KT) immortalised without viral oncogenes and an isogenic variant cell line whose p53 expression was suppressed but that expressed an active mutant K-RAS(V12) (HBEC3KT-P53KRAS). Cell survival following irradiation showed that HBEC3KT-P53KRAS cells were more radioresistant than HBEC3KT cells irrespective of the radiation species. In addition, radiation enhanced the ability of the surviving HBEC3KT-P53RAS cells but not the surviving HBEC3KT cells to grow in anchorage-independent fashion (soft agar colony formation). HZE particle irradiation was far more efficient than γ-rays at rendering HBEC3KT-P53RAS cells permissive for soft agar growth. Gene expression profiles after radiation showed that the molecular response to radiation for HBEC3KT-P53RAS, similar to that for HBEC3KT cells, varies with radiation quality. Several pathways associated with anchorage independent growth, including the HIF-1α, mTOR, IGF-1, RhoA and ERK/MAPK pathways, were over-represented in the irradiated HBEC3KT-P53RAS cells compared to parental HBEC3KT cells. These results suggest that oncogenically progressed human lung epithelial cells are at greater risk for cellular transformation and carcinogenic risk after ionising radiation, but particularly so after HZE radiations. These results have implication for: (i) terrestrial radiation and suggests the possibility of enhanced carcinogenic risk from diagnostic CT screens used for early lung cancer detection; (ii) enhanced carcinogenic risk from heavy particles used in radiotherapy; and (iii) for space radiation, raising the possibility that astronauts harbouring epithelial regions of dysplasia or hyperplasia within the lung that contain oncogenic changes, may have a greater risk for lung cancers based upon their exposure to heavy particles present in the deep space environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4635632PMC
http://dx.doi.org/10.1093/mutage/gev028DOI Listing

Publication Analysis

Top Keywords

hbec3kt cells
16
epithelial cells
12
hbec3kt-p53ras cells
12
carcinogenic risk
12
cells
11
cellular transformation
8
oncogenically progressed
8
progressed human
8
human bronchial
8
bronchial epithelial
8

Similar Publications

Although is a recurrent splicing factor mutation in lung adenocarcinoma (ADC), alone is insufficient for producing tumors in previous models. Because lung ADCs with frequently have co-occurring mutations and smoking histories, we hypothesized that tumor-forming potential arises from interacting with oncogenic and environmental stress. To elucidate the effect of co-occurring with a second mutation, we generated human bronchial epithelial cells (HBEC3kt) with co-occurring and .

View Article and Find Full Text PDF

Background: Climatological shifts and human activities have decimated lakes worldwide. Water in the Great Salt Lake, Utah, USA is at near record lows which has increased risks for exposure to windblown dust from dried lakebed sediments. Formal studies evaluating the health effects of inhaled Great Salt Lake dust (GSLD) have not been performed despite the belief that the dust is harmful.

View Article and Find Full Text PDF

The effects of fine particulate matter (SRM 2786) on three different 3D lung models exposed at the air-liquid interface - A comparative study.

Toxicol In Vitro

June 2024

Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, Oslo 0213, Norway. Electronic address:

3D cell culture models exposed at the air-liquid interface (ALI) represent a potential alternative to animal experiments for hazard and risk assessment of inhaled compounds. This study compares cocultures composed of either Calu-3, A549 or HBEC3-KT lung epithelial cells, cultured together with THP-1-derived macrophages and EA.hy926 endothelial cells, in terms of barrier capacity and responses to a standard reference sample of fine particulate matter (SRM 2786).

View Article and Find Full Text PDF

Linker optimization and activity validation of a cell surface vimentin targeted homo-dimeric peptoid antagonist for lung cancer stem cells.

Bioorg Med Chem

January 2024

Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4349 Martin Luther King Boulevard, Health Building 2, Room 7033, Houston, TX 77204-5037, USA; Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Road, Houston, TX 77030-4009, USA. Electronic address:

Epithelial-to-mesenchymal transition (EMT) endows epithelia-derived cancer cells with properties of stem cells that govern cancer invasion and metastasis. Vimentin is one of the best studied EMT markers and recent reports indicate that vimentin interestingly translocated onto cell surface under various tumor conditions. We recently reported a cell surface vimentin (CSV) specific peptoid antagonist named JM3A.

View Article and Find Full Text PDF

Obesity is a risk factor for asthma. Individuals with asthma and obesity often have poor asthma control and do not respond as well to therapies such as inhaled corticosteroids and long-acting bronchodilators. Weight loss improves asthma control, with a 5%-10% loss in body mass necessary and sufficient to lead to clinically relevant improvements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!