Locating the stationary points of a real-valued multivariate potential energy function is an important problem in many areas of science. This task generally amounts to solving simultaneous nonlinear systems of equations. While there are several numerical methods that can find many or all stationary points, they each exhibit characteristic problems. Moreover, traditional methods tend to perform poorly near degenerate stationary points with additional zero Hessian eigenvalues. We propose an efficient and robust implementation of the Newton homotopy method, which is capable of quickly sampling a large number of stationary points of a wide range of indices, as well as degenerate stationary points. We demonstrate our approach by applying it to the Thomson problem. We also briefly discuss a possible connection between the present work and Smale's 7th problem.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4921163DOI Listing

Publication Analysis

Top Keywords

stationary points
20
potential energy
8
thomson problem
8
degenerate stationary
8
stationary
5
points
5
exploring potential
4
energy landscape
4
landscape thomson
4
problem
4

Similar Publications

Factors affecting pretransplant muscle strength in allogeneic stem cell transplant candidates prior transplantation.

Support Care Cancer

January 2025

Department of Medical Oncology, Heidelberg University Hospital and National Center for Tumor Diseases Heidelberg, a partnership between German Cancer Research Center (DKFZ) and University Medical Center Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.

Purpose: Physical performance is crucial for prognosis after allogeneic hematopoietic stem cell transplantation (allo-HCT). Cardiorespiratory fitness has already been shown to have prognostic value, and there is increasing evidence that muscle strength and associated parameters (e.g.

View Article and Find Full Text PDF

Thermostat-induced artificial lane formation in non-equilibrium molecular dynamics.

J Chem Phys

January 2025

CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.

While most thermostats in molecular dynamics are designed for equilibrium systems, their extension to non-equilibrium simulations has little theoretical justification. In the literature, an artifact referred to as "lane formation" was discovered; however, its cause remained unclear and was simply attributed to a constraint on velocity fluctuations or non-ergodicity in thermostats. In addition, global deterministic thermostatted dynamics was found to exhibit unceasing phase-space compression in steady states, incompatible with their expected stationary distributions and Gibbs entropy, which was mistakenly perceived as inescapable.

View Article and Find Full Text PDF

Background: Although evening screen time is thought to impair subsequent sleep, current measures are limited to questionnaires which seem unlikely to accurately assess screen time in youth. Given the ubiquitous nature of digital devices, improving measurement of screen time is required before related health effects can be appropriately determined. The aim of this study was to objectively quantify screen time before sleep using video camera footage.

View Article and Find Full Text PDF

: Spinal flexibility radiographs are important in adolescent idiopathic scoliosis (AIS) for clinical decision-making. In this study, we introduce a new method, the 'quantitatively controlled standing fulcrum side-bending' test (CSFS test). This is a feasibility study; we aimed to quantify the applied force and track the temporospatial changes in the spine specifically by measuring the continuous change in the Cobb angle (in degrees) during lateral bending.

View Article and Find Full Text PDF

Full-Dimensional Neural Network Potential Energy Surface for the Photodissociation Dynamics of HNCS in the S band.

J Phys Chem A

January 2025

Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, Shaanxi 710127, China.

The full-dimensional potential energy surface (PES) for the photodissociation of HNCS in the S(″) electronic state has been built up by the neural network method based on more than 48,000 points, which were calculated at the multireference configuration interaction level with Davidson correction using the augmented correlation consistent polarized valence triple-ζ basis set. It was found that two minima, namely, and isomers of HNCS, and seven stationary points exist on the S PES for the three dissociation pathways: HNCS(S) → H + NCS/HNC + S(D)/HN(Δ) + CS(Σ). The dissociation energies of two lowest product channels H + NCS and HNC + S(D) calculated on the PES are in good agreement with experimental results, validating the high accuracy of the PES.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!