Using microarray information from oro-pharyngeal data sets and results from primary human foreskin keratinocytes (HFK) expressing Human Papilloma Virus (HPV)-16 E6/E7 proteins, we show that p63 expression regulates signalling molecules which initiate cell migration such as Src and focal adhesion kinase (FAK) and induce invasion in 3D-organotypic rafts; a phenotype that can be reversed by depletion of p63. Knockdown of Src or FAK in the invasive cells restored focal adhesion protein paxillin at cell periphery and impaired the cell migration. In addition, specific inhibition of FAK (PF573228) or Src (dasatinib) activities mitigated invasion and attenuated the expression/activity of matrix metalloproteinase 14 (MMP14), a pivotal MMP in the MMP activation cascade. Expression of constitutively active Src in non-invasive HFK expressing E6/E7 proteins upregulated the activity of c-Jun and MMP14, and induced invasion in rafts. Depletion of Src, FAK or AKT in the invasive cells normalised the expression/activity of c-Jun and MMP14, thus implicating the Src-FAK/AKT/AP-1 signalling in MMP14-mediated extra-cellular matrix remodelling. Up-regulation of Src, AP-1, MMP14 and p63 expression was confirmed in oro-pharyngeal cancer. Since p63 transcriptionally regulated expression of many of the genes in this signalling pathway, it suggests that it has a central role in cancer progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369957 | PMC |
http://dx.doi.org/10.18632/oncotarget.3892 | DOI Listing |
Brain Res
November 2024
Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China. Electronic address:
The increasing prevalence of diabetes and its related cognitive impairments is a significant public health concern. With limited clinical treatment options and an incomplete understanding of the underlying mechanisms, traditional Chinese medicine (TCM) Naofucong is proposed as a potential neuroprotective agent against diabetic cognitive impairment (DCI). This study aims to investigate the therapeutic mechanisms of Naofucong in DCI.
View Article and Find Full Text PDFSci Rep
November 2024
Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
Insulin resistance impairs the cellular insulin response, and often precedes metabolic disorders, like type 2 diabetes, impacting an increasing number of people globally. Understanding the molecular mechanisms in hepatic insulin resistance is essential for early preventive treatments. To elucidate changes in insulin signal transduction associated with hepatocellular resistance, we employed a multi-layered mass spectrometry-based proteomics approach focused on insulin receptor (IR) signaling at the interactome, phosphoproteome, and proteome levels in a long-term hyperinsulinemia-induced insulin-resistant HepG2 cell line with a knockout of the insulin-like growth factor 1 receptor (IGF1R KO).
View Article and Find Full Text PDFRegen Ther
June 2024
Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan.
J Virol
September 2024
Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA.
Unlabelled: We have demonstrated that SAMHD1 (sterile alpha motif and histidine-aspartic domain HD-containing protein 1) is a restriction factor for the human papillomavirus 16 (HPV16) life cycle. Here, we demonstrate that in HPV-negative cervical cancer C33a cells and human foreskin keratinocytes immortalized by HPV16 (HFK+HPV16), SAMHD1 is recruited to E1-E2 replicating DNA. Homologous recombination (HR) factors are required for HPV16 replication, and viral replication promotes phosphorylation of SAMHD1, which converts it from a dNTPase to an HR factor independent from E6/E7 expression.
View Article and Find Full Text PDFUnlabelled: We have demonstrated that SAMHD1 (sterile alpha motif and histidine-aspartic domain HD-containing protein 1) is a restriction factor for the HPV16 life cycle. Here we demonstrate that in HPV negative cervical cancer C33a cells and human foreskin keratinocytes immortalized by HPV16 (HFK+HPV16), SAMHD1 is recruited to E1-E2 replicating DNA. Homologous recombination (HR) factors are required for HPV16 replication and viral replication promotes phosphorylation of SAMHD1, which converts it from a dNTPase to an HR factor independent from E6/E7 expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!