The BIM Deletion Polymorphism and its Clinical Implication in Patients with EGFR-Mutant Non-Small-Cell Lung Cancer Treated with EGFR Tyrosine Kinase Inhibitors.

J Thorac Oncol

*Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; and †Samsung Biomedical Research Institute, Samsung Cancer Research Institute, Samsung Medical Center, Seoul, South Korea.

Published: June 2015

Introduction: A germline BIM deletion polymorphism has been proposed to predict poor treatment response to certain kinase inhibitors. The purpose of this study was to explore whether the BIM deletion polymorphism predicts treatment efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in Korean patients with EGFR-mutant non-small-cell lung cancer (NSCLC).

Methods: Peripheral blood samples from a total of 205 patients with EGFR-mutant NSCLC who were treated with EGFR TKIs between July 2008 and April 2013 were included. The incidence of BIM deletions in these samples was detected by polymerase chain reaction. We compared the clinical outcomes in patients with and without the polymorphism after treatment with EGFR TKIs (gefitinib or erlotinib).

Results: The BIM deletion polymorphism was present in 15.6% (32 of 205) of patients. One patient was homozygous for the deletion, and the remaining 31 had heterozygous deletions. The majority of patients were younger than 65 years (74%), female (68%), never smokers (76%), and had stage IV NSCLC (67%). There were no associations between the BIM deletion polymorphism and clinicopathological features including gender, age, smoking status, histology, stage, and number of metastasis sites. Patients with and without the BIM deletion polymorphism had similar objective response rates (91 vs. 84%, p = 0.585). Progression-free survival and overall survival did not differ significantly between patients with and without the BIM deletion polymorphism (median progression-free survival 12 vs. 11 months, p = 0.160; median overall survival 31 vs. 30 months, p = 0.452). Multivariate analysis identified significantly predictive markers for clinical outcomes of EGFR TKIs including Eastern Cooperative Oncology Group performance status 0-1, adenocarcinoma histology, recurrent disease, and EGFR mutation type. The results were validated in an independent cohort of 69 NSCLC patients.

Conclusions: It remains to be determined whether the BIM deletion polymorphism provides intrinsic resistance or decreased sensitivity to EGFR TKIs in EGFR-mutant NSCLC patients.

Download full-text PDF

Source
http://dx.doi.org/10.1097/JTO.0000000000000535DOI Listing

Publication Analysis

Top Keywords

bim deletion
32
deletion polymorphism
32
egfr tkis
16
patients egfr-mutant
12
kinase inhibitors
12
bim
9
polymorphism
9
patients
9
egfr-mutant non-small-cell
8
non-small-cell lung
8

Similar Publications

Nr4a1 and Nr4a3 redundantly control clonal deletion and contribute to an anergy-like transcriptome in auto-reactive thymocytes to impose tolerance in mice.

Nat Commun

January 2025

Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA.

The Nr4a nuclear hormone receptors are transcriptionally upregulated in response to antigen recognition by the T cell receptor (TCR) in the thymus and are implicated in clonal deletion, but the mechanisms by which they operate are not clear. Moreover, their role in central tolerance is obscured by redundancy among the Nr4a family members and by their reported functions in Treg generation and maintenance. Here we take advantage of competitive bone marrow chimeras and the OT-II/RIPmOVA model to show that Nr4a1 and Nr4a3 are essential for the upregulation of Bcl2l11/BIM and thymic clonal deletion by self-antigen.

View Article and Find Full Text PDF

One sixth of human cancers harbor pathogenic germline variants, but few studies have established their functional contribution to cancer outcomes. Here, we developed a humanized mouse model harboring a common East Asian polymorphism, the BIM deletion polymorphism (BDP), which confers resistance to oncogenic kinase inhibitors through generation of non-apoptotic splice isoforms. However, despite its clear role in mediating bulk resistance in patients, the BDP's role in cancer stem and progenitor cells, which initiate disease and possess altered BCL-2 rheostats compared to differentiated tumor cells, remains unknown.

View Article and Find Full Text PDF

Jieduquyuziyin prescription alleviates lupus development via inhibiting neddylation pathway to promote Bim-induced apoptosis of double negative T cells.

J Ethnopharmacol

January 2025

Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China. Electronic address:

Ethnopharmacological Relevance: Jieduquyuziyin prescription (JP) is an empirical prescription approved for application to treat systemic lupus erythematosus (SLE) in hospital within China. Despite the prominent treatment effect of JP clinically, further investigation is imperative to explore its underlying mechanisms.

Aim Of The Study: We aim to investigate the impact of JP on DN T cell apoptosis in the treatment of SLE and the specific regulation mechanisms.

View Article and Find Full Text PDF

Apoptosis plays prominent roles during organ development, maturation and homeostasis. In the retina, Bcl-2 family members function through the intrinsic cell death pathway with vital roles during vascular development and hyperoxia-mediated vessel obliteration during oxygen induced ischemic retinopathy (OIR). Bim, a BH3 only protein Bcl-2 family member, binds and activates Bax and/or Bak to facilitate apoptosis.

View Article and Find Full Text PDF

Contribution of A1 to macrophage survival in cooperation with MCL-1 and BCL-X in a murine cell model of myeloid differentiation.

Cell Death Dis

September 2024

Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.

Myeloid cells are the first line of defence against pathogens. Mitochondrial apoptosis signalling is a crucial regulator of myeloid cell lifespan and modulates the function of myeloid cells. The anti-apoptotic protein BCL-2-family protein BCL2A1/A1/BFL-1 is strongly upregulated in inflammation in macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!