This study investigates whether knee position affects the amplitude distribution of surface electromyogram (EMG) in the medial gastrocnemius (MG) muscle. Of further concern is understanding whether knee-induced changes in EMG amplitude distribution are associated with regional changes in MG fibre length. Fifteen surface EMGs were acquired proximo-distally from the MG muscle while 22 (13 male) healthy participants (age range: 23-47 years) exerted isometric plantar flexion at 60% of their maximal effort, with knee fully extended and at 90 degrees flexion. The number of channels providing EMGs with greatest amplitude, their relative proximo-distal position and the EMG amplitude averaged over channels were considered to characterise changes in myoelectric activity with knee position. From ultrasound images, collected at rest, fibre length, pennation angle and fat thickness were computed for MG proximo-distal regions. Surface EMGs detected with knee flexed were on average five times smaller than those collected during knee extended. However, during knee flexed, relatively larger EMGs were detected by a dramatically greater number of channels, centred at the MG more proximal regions. Variation in knee position at rest did not affect the proximo-distal values obtained for MG fibre length, pennation angle and fat thickness. Our main findings revealed that, with knee flexion: i) there is a redistribution of activity within the whole MG muscle; ii) EMGs detected locally unlikely suffice to characterise the changes in the neural drive to MG during isometric contractions at knee fully extended and 90 degrees flexed positions; iii) sources other than fibre length may substantially contribute to determining the net, MG activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441502 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126888 | PLOS |
Molecules
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Paper is a thin nonwoven material made from cellulose fibers as the main raw material together with some additives. Paper is highly flammable, leading to the destruction of countless precious ancient books, documents, and art works in fire disasters. In recent years, researchers have made a lot of efforts in order to obtain more durable and fire-retardant paper.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
Shrinkage, a heat-induced process, reorganizes collagen fibers, thereby reducing wound surface area. This technique, commonly applied in surgeries like periareolar mastopexy and skin grafting, is well-established. Despite its widespread use, modern imaging has recently enabled detailed observation of shrinkage's effects on tissue temperature and oxygenation.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Resources and Safety Engineering, Central South University, Changsha 410083, China.
Ensuring the mechanical performance of backfill materials while reducing cementation costs is a key challenge in mine backfill research. To address this, fiber materials such as polypropylene (PP) fiber and rice straw (RS) fiber have been incorporated into cement-based mixtures for mine backfilling. This study investigates the effects of PP and RS fibers on the mechanical properties, flow characteristics, and microstructure of Tailings and Wasted Stone Mixed Backfill (TWSMB).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, Kunsan National University, Gunsan-si 54150, Republic of Korea.
The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion-a process of resin injection and curing in carbon fibers-is prone to initial defects, such as pores, wrinkles, and delamination. This study suggests employing the pultrusion technique for spar production to consistently obtain a uniform cross-section and augment the reliability of both the manufacturing process and the design.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Livestock and Poultry Research Institute, Ningbo Academy of Agriculture Sciences, Ningbo 315000, China.
(SA), a plant rich in dietary fiber, has demonstrated considerable potential for enhancing gut health and antioxidant capacity in animals. This study investigates the integration of SA as a novel dietary ingredient for Zhedong white geese, with a specific focus on evaluating its effects on growth performance, nutrient digestibility, antioxidant capacity, intestinal health, and cecal microbiota composition. A total of 360 1-day-old Zhedong white geese with an average weight of 114.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!