Aim: The effect of astrakurkurone, a novel triterpene, isolated from Indian mushroom Astraeus hygrometricus has been investigated to elucidate the mechanisms involved in selective cell death of Leishmania donovani.

Materials & Methods: The hypotheses were investigated using flow-cytometry, scanning electron microscopy and confocal microscopy.

Results: The time dependent elevation of astrakurkurone-induced reactive oxygen species (ROS) was found intimately associated with apoptosis. The involvement of ROS in promastigote death was found confirmed as NAC and GSH could decrease the ROS level and restored the mitochondrial membrane potential (ΔΨ(m)). It also inhibited the intracellular amastigotes.

Conclusion: We claim the present invention as substantial in depth evidences that mushroom derived active molecules can be exploited as target specific, comparatively nontoxic leads for antileishmanial therapy.

Download full-text PDF

Source
http://dx.doi.org/10.2217/fmb.14.149DOI Listing

Publication Analysis

Top Keywords

novel triterpene
8
astraeus hygrometricus
8
reactive oxygen
8
oxygen species
8
death leishmania
8
triterpene astraeus
4
hygrometricus induces
4
induces reactive
4
species leading
4
leading death
4

Similar Publications

Tertiary amine modification enables triterpene nanoparticles to target the mitochondria and treat glioblastoma via pyroptosis induction.

Biomaterials

December 2024

Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA. Electronic address:

Glioblastoma (GBM), the most common primary brain tumor, lacks effective treatments. Emerging evidence suggests mitochondria as a promising therapeutic target, albeit successfully targeting represents a major challenge. Recently, we discovered a group of triterpenes that can self-assemble into nanoparticles (NPs) for cancer treatment.

View Article and Find Full Text PDF

Application of Fluorescence- and Bioluminescence-Based Biosensors in Cancer Drug Discovery.

Biosensors (Basel)

November 2024

Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.

Recent advances in drug discovery have established biosensors as indispensable tools, particularly valued for their precision, sensitivity, and real-time monitoring capabilities. The review begins with a brief overview of cancer drug discovery, underscoring the pivotal role of biosensors in advancing cancer research. Various types of biosensors employed in cancer drug discovery are then explored, with particular emphasis on fluorescence- and bioluminescence-based technologies such as FRET, TR-FRET, BRET, NanoBRET, and NanoBiT.

View Article and Find Full Text PDF

Research progress on the molecular mechanisms of Saikosaponin D in various diseases (Review).

Int J Mol Med

March 2025

Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China.

Bupleurum, a Traditional Chinese Medicine (TCM) herb, is widely used in China and other Asian countries to manage chronic liver inflammation and viral hepatitis. Saikosaponin D (SSD), a triterpenoid saponin extracted from Bupleurum, exhibits extensive pharmacological properties, including anti‑inflammatory, antioxidant, anti‑apoptotic, anti‑fibrotic and anti‑cancer effects, making it a therapeutic candidate for numerous diseases. Clarifying the targets and molecular mechanisms underlying TCM compounds is essential for scientifically validating TCM's therapeutic roles in disease prevention and treatment, as well as for identifying novel therapeutic targets and lead compounds.

View Article and Find Full Text PDF

Discovery of pentacyclic triterpene conjugates as HBV polymerase/NTCP dual-targeting inhibitors with potent anti-HBV activities.

Bioorg Chem

December 2024

School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China. Electronic address:

The inhibition of HBV DNA and elimination of HBsAg has already been established as an indicator for HBV clinic cure, and a novel dual-targeting inhibitors of HBV polymerase/entry are designed and synthesized in this study. Pentacyclic triterpenes (PTs) scaffold of exhibiting a high affinity to NTCP, including glycyrrhitinic acid (GA), oleanolic acid (OA), ursolic acid (UA), and betulinic acid (BA) were linked neatly with the nucleoside drug zidovudine (AZT) through a molecular hybrid strategy to synthesize twenty of PTs-AZT conjugates for targeting HBV polymerase as well as sodium taurocholate cotransporting polypeptide (NTCP). The conjugates showed significant inhibitory effects on the secretion of HBsAg and HBeAg in HepG2.

View Article and Find Full Text PDF

Obesity, characterized by abnormal or excessive fat accumulation, has become a chronic degenerative health condition that poses significant threats to overall well-being. Pharmacological intervention stands at the forefront of strategies to combat this issue. Recent studies, notably by Umut Ozcan's team, have uncovered the remarkable potential of Celastrol, a small-molecule compound derived from the traditional Chinese herb thunder god vine (Tripterygium wilfordii) as an anti-obesity agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!