Aims: In the present study, copper-doped ZnO nanoparticles (doped ZnO NPs Cu) were synthesized, characterized and evaluated for their possible toxic effects in Drosophila melanogaster (Oregon R).
Methods And Results: X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectrometry confirm the formation of doped ZnO NPs Cu. Doped ZnO NPs Cu (3%) were mixed in the diet at final concentrations of 1, 2, 4 and 8 µg/µl. The starved male flies were allowed to feed on it for 4 days. After completion of the desired duration, climbing ability, activity pattern, activity of acetylcholinesterase (AChE), glutathione (GSH), glutathione-S-transferase (GST), lipid peroxidation (LPO), total protein content and caspases were studied. SDS-PAGE was also performed for whole fly homogenate of control as well as treated flies. No loss in the climbing and activity pattern was observed at the selected doses of doped ZnO NPs Cu. No significant change in the levels of AChE, GSH, GST, LPO, caspase 9/3 and total protein content was observed. The brain sections showed no gross changes in the structure and SDS-PAGE patterns also revealed no change in the protein expression.
Conclusions: The results suggest that doped ZnO NPs Cu are non-toxic at 1, 2, 4 and 8 µg/µl of concentration in D. melanogaster.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/15376516.2015.1045653 | DOI Listing |
Inorg Chem
January 2025
Department of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
Zinc oxide (ZnO) is a semiconductor with a wide range of applications, and often the properties are modified by metal-ion doping. The distribution of dopant atoms within the ZnO crystal strongly affects the optical and magnetic properties, making it crucial to comprehend the structure down to the atomic level. Our study reveals the dopant structure and its contents in Eu-doped ZnO nanosponges with up to 20% Eu-O clusters.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Yıldız Technical University, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, İstanbul, Turkey.
The development of hybrid materials that integrate bioactive and antimicrobial properties within a biodegradable and biocompatible polymer matrix is a key focus in current biomedical research and applications. A significant research gap exists in the field of PHBV nanocomposites, particularly concerning those that simultaneously incorporate both ZnO and HAP particles. This study focuses on the fabrication and characterization of innovative hybrid bionanocomposites composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) combined with zinc oxide (ZnO) and silicon-doped hydroxyapatite (SiHAP) nanocrystals.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China.
Introduction: The anti-cancer properties of zinc oxide-doped carbon dots (CDs/ZnO) in inhibiting triple-negative breast cancer (TNBC) progression merit more investigation.
Methods: With citric acid as the carbon source, urea applied as the nitrogen source, and zinc oxide (ZnO) used as a reactive dopant, CDs/ZnO were synthesized by microwave heating in the current study, followed by the characterization and biocompatibility assessments. Subsequently, the anti-cancer capabilities of CDs/ZnO against TNBC progression were evaluated by various biochemical and molecular techniques, including viability, proliferation, migration, invasion, adhesion, clonogenicity, cell cycle distribution, apoptosis, redox homeostasis, metabolome, and transcriptome assays of MDA-MB-231 cells.
Microb Pathog
December 2024
Davis Pharmaceutical Laboratories, 121, industrial triangle area, kahuta road, Islamabad.
This study explores the potential antagonistic effects of selenium-doped zinc oxide nanoparticles (Se-ZnO NPs), synthesized through a sustainable approach, on maize charcoal rot induced by the fungus Macrophomina phaseolina. Se-ZnO-NPs were prepared using the rhizobium extract of Curcuma longa and characterized for their physicochemical properties. Characterization included various in vitro parameters such as FTIR, ICP-MS, particle size, PDI, and zeta potential.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, 38402-018, Brazil.
Silver nanoparticles are recognized for potent antimicrobial properties against pathogenic bacteria, crucial in addressing the severity of leptospirosis, where an ideal treatment is lacking. This study focuses on assessing the antimicrobial efficacy of silver-doped zinc oxide nanoparticles (ZnO:9Ag) on standard Leptospira spp. strains (six species and ten serovars).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!