Coatings prepared from titania-thiol-ene compositions were found to be both self-cleaning, as measured by changes in water contact angle, and photocatalytic toward the degradation of an organic dye. Stable titania-thiol-ene dispersions at approximately 2 wt % solids were prepared using a combination of high-shear mixing and sonication in acetone solvent from photocatalytic titania, trisilanol isobutyl polyhedral oligomeric silsesquioxane (POSS) dispersant, and select thiol-ene monomers, i.e., trimethylolpropane tris(3-mercaptopropionate) (TMPMP), pentaerythritol allyl ether (APE), and 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TTT). The dispersed particle compositions were characterized by DLS and TEM. The synthetic methods employed yield a strongly bound particle/POSS complex, supported by IR, 29Si NMR, and TGA. The factors of spray techniques, carrier solvent volatility, and particle size and size distributions, in combination, likely all contribute to the highly textured but uniform surfaces observed via SEM and AFM. Polymer composites possessed thermal transitions (e.g., Tg) consistent with composition. In general, the presence of polymer matrix provided mechanical integrity, without significantly compromising or prohibiting other critical performance characteristics, such as film processing, photocatalytic degradation of adsorbed contaminants, and the hydrophobic-hydrophilic transition. In all cases, coatings containing photocatalytic titania were converted from superhydrophobic to superhydrophilic, as defined by changes in the water contact angle. The superhydrophilic state of samples was considered persistent, since long time durations in complete darkness were required to observe any significant hydrophobic return. In a preliminary demonstration, the photocatalytic activity of prepared coatings was confirmed through the degradation of crystal violet dye. This work demonstrates that a scalable process can be found to prepare titania-thiol-ene coatings having improved coating properties which also exhibit photocatalytic and self-cleaning attributes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b01488DOI Listing

Publication Analysis

Top Keywords

polyhedral oligomeric
8
hydrophobic-hydrophilic transition
8
changes water
8
water contact
8
contact angle
8
photocatalytic degradation
8
photocatalytic titania
8
photocatalytic
7
coatings
5
preparation characterization
4

Similar Publications

Engineering the Self-Assembly Pathways of POSS-Peptide Amphiphiles to Form Diverse Cross-β Structures.

Angew Chem Int Ed Engl

December 2024

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.

Cross-β structures are crucial in driving protein folding and aggregation. However, due to their strong aggregating tendency, the precise control of the self-assembly of β-sheet-forming peptides remains a challenge. We propose a molecular geometry strategy to study and control the self-assembly of cross-β structures.

View Article and Find Full Text PDF

Evaluation of dipole moment of polyhedral oligomeric silsesquioxane compounds.

Dalton Trans

December 2024

Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.

The aggregation state of polyhedral oligomeric silsesquioxane (POSS) within a polymer matrix plays a crucial role. Molecular interactions are key driving forces for aggregation, and one of the key physical parameters is the dipole moment (DPM). Quantum calculations such as density functional theory (DFT) calculations can be used to estimate the DPM.

View Article and Find Full Text PDF

Solvent-Free Silsesquioxane Self-Welding for 3D Printing Multi-Refractive Index Glass Objects.

Adv Opt Mater

August 2024

Wyant College of Optical Sciences, The University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, USA.

The growing interest in 3D printing of silica glass has spurred substantial research efforts. Our prior work utilizing a liquid silica resin (LSR) demonstrated high printing accuracy and resolution. However, the resin's sensitivity to moisture posed limitations, restricting the printing environment.

View Article and Find Full Text PDF

Self-healing, flame retardant and UV resistant lignin-derived epoxy wood coating with a Schiff base structure.

Int J Biol Macromol

December 2024

Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 54896, Republic of Korea. Electronic address:

The traditional epoxy resin not only is flammable and non-recyclable and but also heavily dependents on petroleum resources, which cannot meet the requirements of fire prevention and sustainable development. In this study, a vanillin intermediate (VAP) with dynamic imine bond (C=N) was prepared by schiff base reaction between the lignin derivative vanillin (-CHO) and the cage-like polyhedral oligomeric silsesquioxane OA-POSS(-NH). Then, a biomass-based P-N-Si flame retardant (VAPD) was synthesized by adding 9,10-Dihydro-9-Oxa-10-Phosphaphenanthrene-10-Oxide (DOPO) into the VAP.

View Article and Find Full Text PDF

Silver functionalized chitosan composite hydrogel with sustained silver release and enhanced antibacterial properties promotes healing of infected wounds.

Int J Biol Macromol

December 2024

Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China. Electronic address:

Bacterial infections during wound healing often cause inflammation, which delays the healing process. Therefore, innovative wound dressings are urgently needed to inhibit bacterial infections and promote healing. This study proposes an Ag-functionalized chitosan hydrogel dressing, formed via a Schiff-base reaction between alkynyl Ag substituted chitosan (Ag-CS) and octafunctionalized polyhedral oligomeric silsesquioxane with benzaldehyde-terminated polyethylene glycol (POSS-PEG-CHO), to address the issue of bacterial infection in wounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!