Pyrabactin regulates root hydraulic properties in maize seedlings by affecting PIP aquaporins in a phosphorylation-dependent manner.

Plant Physiol Biochem

College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China. Electronic address:

Published: September 2015

Pyrabactin, an agonist of abscisic acid (ABA), has led to the isolation and characterization of pyrabactin resistance 1/pyrabactin resistance 1-like (PYR1/PYLs) ABA receptors in Arabidopsis, which has well explained ABA-mediated stomatal movement and stress-related gene expression. In addition to inducing stomatal closure and inhibiting transpiration, ABA can also enhance root hydraulic conductivity (Lpr), thus maintaining water balance under water deficiency-related stress, but its molecular mechanism remains unclear. In the present study, the root hydraulic properties of maize seedlings in response to pyrabactin were compared to those caused by ABA. Similar to ABA, lower concentration of pyrabactin induced a remarkable increase in Lpr as well as in the gene expression of the plasma membrane intrinsic protein (ZmPIP) aquaporin and in the ZmPIP2; 1/2; 2 protein abundance. The pyrabactin-induced enhancement of Lpr was abolished by H2O2 application, indicating that pyrabactin regulates Lpr by modulating ZmPIP at transcriptional, translational and post-translational (activity) level. Pyrabactin-mediated water transport and ZmPIP gene expression were phosphorylation-dependent, suggesting that ABA-PYR1-(PP2C)-protein kinase-AQP signaling pathway may be involved in this process. As we know this is the first established ABA signaling transduction pathway that mediated water transport in roots. This observation further addressed the importance of PYR1/PYLs ABA receptor in regulating plant water use efficiency from the under ground level. Except inhibiting transpiration in leaves, our result introduces the exciting possibility of application ABA agonists for regulating roots water uptake in field, with a species- and dose dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2015.05.005DOI Listing

Publication Analysis

Top Keywords

root hydraulic
12
gene expression
12
pyrabactin regulates
8
hydraulic properties
8
properties maize
8
maize seedlings
8
aba
8
pyr1/pyls aba
8
inhibiting transpiration
8
water transport
8

Similar Publications

Redistribution of soil water by mature trees towards dry surface soils and uptake by seedlings in a temperate forest.

Plant Biol (Stuttg)

January 2025

School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany.

Hydraulic redistribution is considered a crucial dryland mechanism that may be important in temperate environments facing increased soil drying-wetting cycles. We investigated redistribution of soil water from deeper, moist to surface, dry soils in a mature mixed European beech forest and whether redistributed water was used by neighbouring native seedlings. In two experiments, we tracked hydraulic redistribution via (1) H labeling and (2) O natural abundance.

View Article and Find Full Text PDF

Hydraulic conductivity and photosynthetic capacity of seedlings of genotypes.

Photosynthetica

January 2025

Plant Physiology Sector, State University of Norte Fluminense, Center for Sciences and Agricultural Technologies (CCTA), Avenida Alberto Lamego, 2000, 28015-620, Campos dos Goytacazes, RJ, Brazil.

The aim was to investigate the morphological, photosynthetic, and hydraulic physiological characteristics of different genotypes of under controlled cultivation conditions. Growth, conductance, and hydraulic conductivity of the root system of 16 genotypes were evaluated in Experiment 1 (November 2013). In Experiment 2 (December 2014), in addition to the previous characteristics, gas exchange, photochemical efficiency, leaf water potential, and leaf hydraulic conductivity were investigated in five genotypes.

View Article and Find Full Text PDF

Drought impacts trees in varied temporal and spatial patterns, suggesting that heterogeneity of below-ground water stores influences the fate of trees under water stress. Karst ecosystems rely on shallow soil overlying bedrock that can store available water in primary pores. A contribution of rock moisture to tree water status has been previously demonstrated, but actual mechanisms and rates of rock-to-root water delivery remain unknown.

View Article and Find Full Text PDF

The effectiveness of using vegetation to reinforce slopes is influenced by the soil and vegetation characteristics. Hence, this study pioneers the construction of an extensive soil database using random forest machine learning and ordinary kriging methods, focusing on the influence of plant roots on the saturated and unsaturated properties of residual soils. Soil organic content, which includes contributions from both soil organisms and roots, functions as a key factor in estimating soil hydraulic and mechanical properties influenced by vegetation roots.

View Article and Find Full Text PDF

Solar energy generated from photovoltaic panel is an important energy source that brings many benefits to people and the environment. This is a growing trend globally and plays an increasingly important role in the future of the energy industry. However, it intermittent nature and potential for distributed system use require accurate forecasting to balance supply and demand, optimize energy storage, and manage grid stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!