The use of Mesenchymal Stromal Cells (MSCs) aiming to treat cancer has shown very contradictory results. In an attempt to clarify the contradictory results reported in the literature and the possible role of human fallopian tube Mesenchymal Stromal Cells (htMSCs) against breast cancer, the aim of this study was to evaluate the clinical effect of htMSCs in murine mammary adenocarcinoma using two different approaches: (1) coinjections of htMSCs and 4T1 murine tumor cell lineage and (2) injections of htMSCs in mice at the initial stage of mammary adenocarcinoma development. Coinjected animals had a more severe course of the disease and a reduced survival, while tumor-bearing animals treated with 2 intraperitoneal injections of 10(6) htMSCs showed significantly reduced tumor growth and increased lifespan as compared with control animals. Coculture of htMSCs and 4T1 tumor cells revealed an increase in IL-8 and MCP-1 and decreased VEGF production. For the first time, we show that MSCs isolated from a single source and donor when injected in the same animal model and tumor can lead to opposite results depending on the experimental protocol. Also, our results demonstrated that htMSCs can have an inhibitory effect on the development of murine mammary adenocarcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427122PMC
http://dx.doi.org/10.1155/2015/796215DOI Listing

Publication Analysis

Top Keywords

mesenchymal stromal
12
stromal cells
12
mammary adenocarcinoma
12
4t1 murine
8
adenocarcinoma approaches
8
murine mammary
8
htmscs 4t1
8
htmscs
7
human mesenchymal
4
cells
4

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells.

Cytotherapy

January 2025

Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.

View Article and Find Full Text PDF

Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.

View Article and Find Full Text PDF

Validation of an automated quality control method to test sterility of two advanced therapy medicinal products: Mesenchymal stromal cells and their extracellular vesicles.

Hematol Transfus Cell Ther

November 2024

Hospital São Rafael, Salvador, Bahia, Brazil; Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador, Bahia, Brazil; Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil. Electronic address:

Mesenchymal stromal cells are multipotent cells present in various tissues that are widely studied for relevant therapeutic potential due to their paracrine immunomodulatory and tissue regenerating properties. Many mesenchymal stromal cell-based products are under investigation for the treatment of different clinical conditions. Recently, the therapeutic potential of the extracellular vesicles released by these cells has been under focus, with emphasis on clinical translation.

View Article and Find Full Text PDF

Epiregulin ameliorates ovariectomy-induced bone loss through orchestrating the differentiation of osteoblasts and osteoclasts.

J Bone Miner Res

January 2025

NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.

Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!