To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the "reaching circuit" remains unknown. Here we used transcranial magnetic stimulation (TMS) in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS) or dorsal premotor cortex (PMd), in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; targets were either visible for the whole trial (Target-ON) or flashed for 200 ms (Target-OFF). Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks-two parameters typically used to probe the planned movement amplitude-irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160-100 ms before movement onset for mIPS and 100-40 ms for left PMd. TMS applied over right PMd had no significant effect. These results demonstrate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric organization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422032PMC
http://dx.doi.org/10.3389/fnhum.2015.00241DOI Listing

Publication Analysis

Top Keywords

direction amplitude
16
left pmd
16
movement direction
8
flashed 200
8
pmd tms
8
direction
6
pmd
6
movement
5
amplitude
5
tms
5

Similar Publications

The study aimed to determine if virtual reality (VR) games could enhance neuromuscular control and improve anticipatory and compensatory strategies in ball-kicking for soccer players. It was a single-blind randomized clinical trial involving 32 male soccer players with chronic ankle instability. Participants were divided into two groups: VR games and balance training.

View Article and Find Full Text PDF

How to determine hands' vibration perception thresholds - a systematic review.

Behav Res Methods

December 2024

Algoritmi Research Centre, University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal.

The vibration perception threshold (VPT) is the minimum amplitude required for conscious vibration perception. VPT assessments are essential in medical diagnostics, safety, and human-machine interaction technologies. However, factors like age, health conditions, and external variables affect VPTs.

View Article and Find Full Text PDF

As a critical component of aero-engines, the processing quality of the blade has a significant impact on the engine's overall performance and service life. First, from the perspective of double abrasive grains, two finite element models-simultaneous and sequential scratches-are established. The interaction between the two abrasive grains affects not only the polishing force and chip formation but also the surface morphology of the processed workpiece.

View Article and Find Full Text PDF

Nonlinear coupling of closely spaced modes in atomically thin MoS nanoelectromechanical resonators.

Microsyst Nanoeng

December 2024

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.

Nanoelectromechanical systems (NEMS) incorporating atomic or molecular layer van der Waals materials can support multimode resonances and exotic nonlinear dynamics. Here we investigate nonlinear coupling of closely spaced modes in a bilayer (2L) molybdenum disulfide (MoS) nanoelectromechanical resonator. We model the response from a drumhead resonator using equations of two resonant modes with a dispersive coupling term to describe the vibration induced frequency shifts that result from the induced change in tension.

View Article and Find Full Text PDF

Role of air sinuses in sound reception of the Yangtze finless porpoise: A numerical study.

J Acoust Soc Am

December 2024

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.

Although air sinuses are prevalent in odontocetes and are an integral component of their sound reception system, the acoustic function of these air-filled structures remains largely unknown. To address this, we developed a numerical model using computed tomography data from a Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) to investigate the role of the air sinuses in sound reception. By comparing sound reception characteristics between model cases with and without the air sinuses, we found that the air sinuses improved sound reception directivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!