PDT dose dosimetry for pleural photodynamic therapy.

Proc SPIE Int Soc Opt Eng

Dept. of Radiation Oncology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA USA 19104.

Published: February 2013

PDT dose is the product of the photosensitizer concentration and the light fluence in target tissue. Although existing systems are capable of measuring the light fluence , the concurrent measurement of photosensitizer in the treated tissue so far has been lacking. We have developed and tested a new method to simultaneously acquire light dosimetry and photosensitizer fluorescence data via the same isotropic detector, employing treatment light as the excitation source. A dichroic beamsplitter is used to split light from the isotropic detector into two fibers, one for light dosimetry, the other, after the 665 nm treatment light is removed by a band-stop filter, to a spectrometer for fluorescence detection. The light fluence varies significantly during treatment because of the source movement. The fluorescence signal is normalized by the light fluence measured at treatment wavelength. We have shown that the absolute photosensitizer concentration can be obtained by an optical properties correction factor and linear spectral fitting. Tissue optical properties are determined using an absorption spectroscopy probe immediately before PDT at the same sites. This novel method allows accurate real-time determination of delivered PDT dose using existing isotropic detectors, and may lead to a considerable improvement of PDT treatment quality compared to the currently employed systems. Preliminary data in patient studies is presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437732PMC
http://dx.doi.org/10.1117/12.2005198DOI Listing

Publication Analysis

Top Keywords

light fluence
16
pdt dose
12
light
9
photosensitizer concentration
8
light dosimetry
8
isotropic detector
8
treatment light
8
optical properties
8
pdt
5
treatment
5

Similar Publications

Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.

View Article and Find Full Text PDF

Photoacoustic imaging (PAI) is a developing image modality that benefits from light-matter interaction and low acoustic attenuation to provide functional information on tissue composition at relatively large depths. Several studies have reported the potential of dichroism-sensitive photoacoustic (DS-PA) imaging to expand PAI capabilities by obtaining morphological information of tissue regarding anisotropy and predominant orientation. However, most of these studies have limited their analysis to superficial scanning of samples, where fluence effects are negligible.

View Article and Find Full Text PDF

Low-energy light ion beams are an essential resource in lithography for nanopatterning magnetic materials and interfaces due to their ability to modify the structure and properties of metamaterials. Here we create ferromagnetic/non-ferromagnetic heterostructures with a controlled layer thickness and nanometer-scale precision. For this, hydrogen ion (H) irradiation is used to reduce the antiferromagnetic nickel oxide (NiO) layer into ferromagnetic Ni with lower fluence than in the case of helium ion (He) irradiation.

View Article and Find Full Text PDF

Background: Conventional photodynamic therapy (cPDT) is an effective treatment option for field cancerization and multiple actinic keratoses (AK). The main side effect of cPDT is pain during illumination which in severe cases might necessitate early termination of treatment. Modification of treatment parameters such as light dose and fluence rate is a promising approach to mitigate PDT-associated pain.

View Article and Find Full Text PDF

Effective management of pre-existing biofilms using UV-LED through inactivation, disintegration and peeling.

J Hazard Mater

December 2024

Department of Electronic Engineering, Laboratory of Micro/Nano-Optoelectronics, Xiamen University, Xiamen, Fujian 361005, China; Institute of Nanoscience and Applications (INA), Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.

Managing undesirable biofilms is a persistent challenge in water treatment and distribution systems. Although ultraviolet-light emitting diode (UV-LED) irradiation, an emerging disinfection method with the chemical-free and emission-adjustable merits, has been widely reported effective to inactivate planktonic bacteria, few studies have examined its effects on biofilms. This study aims to fill this gap by exploring the performance and mechanism of UV-LEDs on the prefabricated Escherichia coli (E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!