Liver X receptor activation enhances CVB3 viral replication during myocarditis by stimulating lipogenesis.

Cardiovasc Res

Centre for Molecular and Vascular Biology (CMVB), Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium CArdiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 ER Maastricht, The Netherlands ICIN - Netherlands Heart Institute, Utrecht, The Netherlands.

Published: July 2015

AI Article Synopsis

  • Viral myocarditis (VM) is a serious heart condition caused by viral infections, and current treatments are ineffective. The study examines whether the LXR agonist T0901317 can influence viral replication and heart inflammation during VM.
  • Surprisingly, T0901317 did not reduce immune cell infiltration in the heart but rather increased mortality, viral presence, and heart cell damage after CVB3 infection when given before exposure.
  • The findings suggest that LXR agonism worsens heart damage during VM by promoting lipid production, which in turn enhances viral replication rather than providing any protective effects.

Article Abstract

Aims: Viral myocarditis (VM) is severe cardiac inflammation that can result in sudden death or congestive heart failure in previously healthy adults, with no effective therapy. Liver X receptor (LXR) agonists have both anti-inflammatory and lipid-lowering properties. This study investigates whether LXR agonist T0901317 may modulate viral replication and cardiac inflammation during VM.

Methods And Results: (i) Adult mice were administered T0901317 or vehicle with the onset of inflammation during CVB3 virus myocarditis or (ii) treated 2 days prior to CVB3 infection. Against what we expected, T0901317 treatment did not alter leucocyte infiltration after CVB3 infection; yet pre-administration with T0901317 resulted in increased mortality upon CVB3 infection, higher cardiac viral presence, and increased cardiomyocyte damage when compared with the vehicle. Furthermore, we show a correlation of fatty acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP-1c) with CVB3 viral load in the heart and that T0901317 is able to enhance the cardiac expression of FAS and SREBP-1c. Finally, we show in vitro that T0901317 is able to exaggerate CVB3-mediated damage of Vero cells, whereas inhibitors of FAS and the SREBP-1c reduce the viral presence of CVB3 in neonatal cardiomyocytes.

Conclusion: LXR agonism does not modulate cardiac inflammation, but exacerbates virus-mediated myocardial damage during VM by stimulating lipid biosynthesis and enhancing CVB3 replication.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvv157DOI Listing

Publication Analysis

Top Keywords

cardiac inflammation
12
cvb3 infection
12
liver receptor
8
cvb3
8
cvb3 viral
8
viral replication
8
viral presence
8
fas srebp-1c
8
viral
6
t0901317
6

Similar Publications

Phenotypic Classification of Multisystem Inflammatory Syndrome in Children Using Latent Class Analysis.

JAMA Netw Open

January 2025

Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia.

Importance: Multisystem inflammatory syndrome in children (MIS-C) is an uncommon but severe hyperinflammatory illness that occurs 2 to 6 weeks after SARS-CoV-2 infection. Presentation overlaps with other conditions, and risk factors for severity differ by patient. Characterizing patterns of MIS-C presentation can guide efforts to reduce misclassification, categorize phenotypes, and identify patients at risk for severe outcomes.

View Article and Find Full Text PDF

Introduction: Decreased left atrial appendage emptying velocity (LAAV) is a marker for thrombus formation. This study evaluates the association between LAAV and inflammatory indices in non-valvular atrial fibrillation (AF) patients.

Methods: The study population was 1428 patients with AF, 875 of whom enrolled.

View Article and Find Full Text PDF

The cardiovascular risks linked to PM include calcification in both vasculature and myocardial tissues, leading to structural changes and functional decline. Through the selection of a clinically proven endogenous agent, sodium thiosulfate (STS), capable of addressing PM related cardiac abnormalities, we not only address the absence of effective solutions to mitigate PM toxicity, but also provide evidence for the repurposing potential of STS in ameliorating PM induced cardiac damage. Female Wistar rats were exposed to PM (250 μg/m) for 3 h daily for 21 days.

View Article and Find Full Text PDF

Background: The therapeutic armamentarium for heart failure with preserved ejection fraction (HFpEF) remains notably constrained. A factor contributing to this problem could be the scarcity of in vitro models for HFpEF, which hinders progress in developing new therapeutic strategies. Here, we aimed at developing a novel, comorbidity-inspired, human, in vitro model for HFpEF.

View Article and Find Full Text PDF

MSC-derived exosome ameliorates pulmonary fibrosis by modulating NOD 1/NLRP3-mediated epithelial-mesenchymal transition and inflammation.

Heliyon

January 2025

Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, Hunan, China.

Background: Pulmonary fibrosis (PF) is an irreversible and usually fatal lung disease. In recent years, the therapeutic role of exosomes derived from mesenchymal stem cells (MSC-exos) in anti-fibrotic treatment has received much attention. In this study, we aimed to determine the anti-fibrotic properties and related molecular mechanisms of MSC-exos in Bleomycin(BLM)-induced PF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!