Piwi-interacting RNAs (piRNAs) are a distinct group of small noncoding RNAs (sncRNAs) that silence transposable genetic elements to protect genome integrity. Because of their limited expression in gonads and sequence diversity, piRNAs remain the most mysterious class of small RNAs. Studies have shown piRNAs are present in somatic cells and dysregulated in gastric, breast and liver cancers. By deep sequencing 24 frozen benign kidney and clear cell renal cell carcinoma (ccRCC) specimens and using the publically available piRNA database, we found 26,991 piRNAs present in human kidney tissue. Among 920 piRNAs that had at least two copies in one specimen, 19 were differentially expressed in benign kidney and ccRCC tissues, and 46 were associated with metastasis. Among the metastasis-related piRNAs, we found three piRNAs (piR-32051, piR-39894 and piR-43607) to be derived from the same piRNA cluster at chromosome 17. We confirmed the three selected piRNAs not to be miRNAs or miRNA-like sncRNAs. We further validated the aberrant expression of the three piRNAs in a 68-case formalin-fixed and paraffin-embedded (FFPE) ccRCC tissue cohort and showed the up-regulation of the three piRNAs to be highly associated with ccRCC metastasis, late clinical stage and poor cancer-specific survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534471 | PMC |
http://dx.doi.org/10.2119/molmed.2014.00203 | DOI Listing |
Sci Data
January 2025
Gakushuin University, Faculty of Science, Department of Life Science, Mejiro 1-5-1, Toshima-ku, Tokyo, 171-8588, Japan.
The wild silk moth, Bombyx mandarina, is the closest relative of the domesticated silk moth, Bombyx mori. National BioResource Project of Japan (NBRP) maintains a B. mandarina strain derived from individuals captured at Sakado (Saitama, Japan) in 1982.
View Article and Find Full Text PDFExp Cell Res
January 2025
Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, West Bengal, India. Electronic address:
The signaling pathways behind severe astrocytic lysis with Aquaporin4 auto-antibody (AQP4-IgG) seropositivity, and reactive astrocytosis with myelin oligodendrocyte glycoprotein auto-antibody (MOG-IgG) seropositivity, remain largely unexplored in Neuromyelitis optica spectrum disorder (NMOSD), while almost no molecular details being known about double-seronegative (DN) patients. Recent discovery of glial fibrillary acidic protein (GFAP) in DN NMOSD patients' cerebrospinal fluid, akin to AQP4-IgG + ve cases, suggests astrocytopathy. Here, we aim to study small non coding RNA (sncRNA) signature alterations in astrocytes exposed to AQP4-IgG + ve and MOG-IgG + ve patient sera, and their potential resemblance with DN-NMOSD.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Human Genetics, University of California, Los Angeles, CA, USA.
Toxin-antidote elements (TAs) are selfish DNA sequences that bias their transmission to the next generation. TAs typically consist of two linked genes: a toxin and an antidote. The toxin kills progeny that do not inherit the TA, while the antidote counteracts the toxin in progeny that inherit the TA.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
December 2024
Klinik für Kardiologie und Pneumologie, Median Klinikum Flechtingen, Flechtingen, Germany.
Introduction: Long COVID-19 illness is a severely disabling disease with shortness of breath, weakness and fatigue as leading symptoms, resulting in poor quality of life and substantial delay in return to work. No specific respiratory therapy has been validated for patients with long COVID. The intermittent hypoxia-hyperoxia training (IHHT) is a respiratory therapeutic modality to improve exercise performance via controlled respiratory conditioning.
View Article and Find Full Text PDFEpigenetics
December 2024
Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!