Background: Achieving optimal results following deep brain stimulation (DBS) typically involves several months of programming sessions. The Graphical User Interface for DBS Evaluation (GUIDE) study explored whether a visual programming system could help clinicians accurately predetermine ideal stimulation settings in DBS patients with Parkinson's disease.
Methods: A multicenter prospective, observational study was designed that utilized a blinded Unified Parkinson's Disease Rating Scale (UPDRS)-III examination to prospectively assess whether DBS settings derived using a neuroanatomically based computer model (Model) could provide comparable efficacy to those determined through traditional, monopolar review-based programming (Clinical). We retrospectively compared the neuroanatomical regions of stimulation, power consumption and time spent on programming using both methods.
Results: The average improvement in UPDRS-III scores was 10.4 ± 7.8 for the Model settings and 11.7 ± 8.7 for the Clinical settings. The difference between the mean UPDRS-III scores with the Model versus the Clinical settings was 0.26 and not statistically significant (p = 0.9866). Power consumption for the Model settings was 48.7 ± 22 μW versus 76.1 ± 46.5 μW for the Clinical settings. The mean time spent programming using the Model approach was 31 ± 16 s versus 41.4 ± 29.1 min using the Clinical approach.
Conclusion: The Model-based DBS settings provided similar benefit to the Clinical settings based on UPDRS-III scores and were often arrived at in less time and required less power than the Clinical settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000375172 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!