Microglandular proliferations often pose a diagnostic challenge in small endocervical and endometrial biopsies. Microglandular hyperplasia (MGH) is one of the most common pseudoneoplastic glandular proliferations of uterine cervix, which can closely mimic endometrial adenocarcinomas (EAC) with a microglandular pattern (microglandular EAC). Although MGH is typically characterized by relatively uniform nuclei and rare to absent mitoses, atypical forms with architectural and/or cytologic deviation from the usual morphology have been previously described. Recently, a series of MGH with high mitotic activity has also been documented. Although careful morphological assessment and immunohistochemical workup can resolve the diagnostic dilemma in some cases, additional differential diagnostic tools are needed to separate both the common and atypical variants of MGH from EAC with microglandular pattern. Frequent KRAS mutation has been previously reported in endometrial complex mucinous lesions and endometrial mucinous carcinomas. However, the diagnostic utility of KRAS mutation analysis has not yet been explored in the context of cervical and endometrial microglandular lesions. Twelve mitotically active MGH cases and 15 cases of EAC with microglandular growth pattern were selected for the study. KRAS mutation analysis was performed in all cases by highly sensitive single-strand conformation polymorphism analysis. Clinical history and follow-up data were retrieved from electronic medical records. KRAS mutation was absent in all MGH cases, whereas 9 (60%) of 15 microglandular EAC cases tested positive for KRAS mutation. Our data indicate that KRAS mutation analysis may offer additional discriminatory power in separating benign MGH from EAC with microglandular pattern.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humpath.2015.03.010DOI Listing

Publication Analysis

Top Keywords

kras mutation
28
eac microglandular
16
microglandular pattern
12
mutation analysis
12
microglandular
10
microglandular proliferations
8
microglandular eac
8
mgh eac
8
mgh cases
8
kras
7

Similar Publications

Most tumors initially respond to treatment, yet refractory clones subsequently develop owing to resistance mechanisms associated with cancer cell plasticity and heterogeneity. We used a chemical biology approach to identify protein targets in cancer cells exhibiting diverse driver mutations and representing models of tumor lineage plasticity and therapy resistance. An unbiased screen of a drug library was performed against cancer cells followed by synthesis of chemical analogs of the most effective drug.

View Article and Find Full Text PDF

Background: The narrative review aims to explore CRC pathogenesis by deciphering genetic-environmental interactions, analyzing the tumor microenvironment's role, and assessing treatment responses. These objectives seek to enhance clinical decision-making and improve CRC patient care through a comprehensive understanding of the disease.

Methods: A narrative review from 2019 to 2024 on colorectal cancer (CRC) pathogenesis and treatment strategies was conducted.

View Article and Find Full Text PDF

Most cancer mutation profiling studies are laboratory-based and lack direct clinical application. For clinical use, it is necessary to focus on key genes and integrate them with relevant clinical variables. We aimed to evaluate the prognostic value of the dosage of the KRAS G12 mutation, a key pancreatic ductal adenocarcinoma (PDAC) variant and to investigate the biological mechanism of the prognosis associated with the dosage of the KRAS G12 mutation.

View Article and Find Full Text PDF

Longitudinal genomic profiling using liquid biopsies in metastatic nonsquamous NSCLC following first line immunotherapy.

NPJ Precis Oncol

January 2025

Clinical Pharmacology and Quantitative Science, Genmab Inc, Princeton, NJ, USA.

Tumor genomic profiling is often limited to one or two timepoints due to the invasiveness of tissue biopsies, but longitudinal profiling may provide deeper clinical insights. Using ctDNA data from IMpower150 study, we examined genetic changes in metastatic non-squamous NSCLC post-first-line immunotherapy. Mutations were most frequently detected in TP53, KRAS, SPTA1, FAT3, and LRP1B at baseline and during treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!