Wastewater reclamation and reuse is a promising way to relieve water scarcity by substituting for natural water consumption by industrial cooling. However, health concerns regarding cooling water originating from reclaimed water are increasing because an abundance of antibiotic-resistant bacteria (ARB) has been detected in reclaimed water. To assess the potential increase of ARB risks in reclaimed water after reuse for industrial cooling, the prevalence of six types of ARB was investigated in water and sediment samples from Lake Gaobeidian, which serves as an artificial circular storage reservoir for reclaimed water for cooling reuse. The effect of treated wastewater and cooling water drainage on the ARB distribution in water and sediment samples was also studied. The results showed that the concentration levels of six types of ARB in lake water samples were as high as those in treated wastewater. The annual median concentrations of total heterotrophic bacteria (HPC) and ARB in discharged cooling water after usage were 0.6-log and 0.4-log higher than those in treated wastewater and the cooling water intake site, respectively, indicating that the process of cooling water usage enhanced the proliferation of HPC and consequently increased the concentrations of ARB. Furthermore, the percentages of penicillin-, ampicillin-, and cephalothin-resistant bacteria in water were 30-57%, 36-48%, and 23-40% higher than those in sediment, respectively. However, the proportions of chloramphenicol-resistant bacteria in water were 35-85% lower than those in sediment. Quantitative evaluation of antibiotic resistance showed that HPC in water had a significant tolerance to penicillin and chloramphenicol, with 50% inhibitory concentrations reaching 22.90 mg L(-1) and 29.11 mg L(-1), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5em00177c | DOI Listing |
ACS Nano
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.
View Article and Find Full Text PDFNano Lett
January 2025
School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan 450046, China.
Spray cooling, which dissipates heat through droplet evaporation, is an efficient cooling method. Using seawater instead of freshwater in spraying is appealing given the intensifying global water crisis. However, seawater-based cooling suffers from salt accumulation on hot surfaces.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Water and Climate, Vrije Universiteit Brussel, Brussels, Belgium.
Irrigation rapidly expanded during the 20 century, affecting climate via water, energy, and biogeochemical changes. Previous assessments of these effects predominantly relied on a single Earth System Model, and therefore suffered from structural model uncertainties. Here we quantify the impacts of historical irrigation expansion on climate by analysing simulation results from six Earth system models participating in the Irrigation Model Intercomparison Project (IRRMIP).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Nanoscale Biophotonics Laboratory, University of Galway, University Road, Galway H91 TK33 Ireland. Electronic address:
Poly-N-isopropylacrylamide (PNIPAm), a thermorresponsive polymer, highly soluble in water below its lower critical solution temperature (LCST), is widely used in biomedical applications like drug delivery. Being able to measure PNIPAm size and aggregation state in solution quickly, inexpensively, and accurately below the LCST is critical when stoichiometric particle or molecular ratios are required. Dynamic light scattering (DLS) is probably the most widely available, and inexpensive nanoparticle sizing technique, but there are limitations with respect to sample polydispersity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 43200, China.
Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!