Layer-specific endocannabinoid-mediated long-term depression of GABAergic neurotransmission onto principal neurons in mouse visual cortex.

Eur J Neurosci

Neuroscience Research Center, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74, Zhongshan Road 2, Guangzhou, 510080, China.

Published: August 2015

Visually induced endocannabinoid-mediated long-term depression of GABAergic neurotransmission (iLTD) mediates the maturation of GABAergic release in layer 2/3 of visual cortex. Here we examined whether the maturation of GABAergic transmission in other layers of visual cortex also requires endocannabinoids. The developmental plasticity of GABAergic neurotransmission onto the principal neurons in different layers of mouse visual cortex was examined in cortical slices by whole-cell recordings of inhibitory postsynaptic currents evoked by presynaptic inhibitory inputs. Theta burst stimulation of GABAergic inputs induced an endocannabinoid-mediated long-term depression of GABAergic neurotransmission onto pyramidal cells in layer 2/3 from postnatal day (P)10 to 30 and in layer 5 from P10 to 40, whereas that of GABAergic inputs did not induce iLTD onto star pyramidal neurons in layer 4 at any time postnatally, indicating that this plasticity is laminar-specific. The developmental loss of iLTD paralleled the maturation of GABAergic inhibition in both layer 2/3 and layer 5. Visual deprivation delayed the developmental loss of iLTD in layers 3 and 5 during a critical period, while 2 days of light exposure eliminated iLTD in both layers. Furthermore, the GABAergic synapses in layers 2/3 and 5 did not normally mature in the type 1 cannabinoid receptor knock-out mice, whereas those in layer 4 did not require endocannabinoid receptor for maturation. These results suggest that visually induced endocannabinoid-dependent iLTD mediates the maturation of GABAergic release in extragranular layer rather than in granular layer of mouse visual cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.12958DOI Listing

Publication Analysis

Top Keywords

visual cortex
20
gabaergic neurotransmission
16
maturation gabaergic
16
endocannabinoid-mediated long-term
12
long-term depression
12
depression gabaergic
12
mouse visual
12
layer 2/3
12
gabaergic
11
layer
9

Similar Publications

Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.

View Article and Find Full Text PDF

Effects of psilocybin on mouse brain microstructure.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (P.C.F., A.P.S., J.J.Y.).

Background And Purpose: There is surging interest in the therapeutic potential of psychedelic compounds like psilocybin in the treatment of psychiatric illnesses like major depressive disorder (MDD). Recent studies point to the rapid antidepressant effect of psilocybin; however, the biological mechanisms underlying these differences remain unknown. This study determines the feasibility of using diffusion MRI to characterize and define the potential spatiotemporal microstructural differences in the brain following psilocybin treatment in C57BL/6J male mice.

View Article and Find Full Text PDF

Exploring imitation of within hand prehensile object manipulation using fMRI and graph theory analysis.

Sci Rep

January 2025

Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

This study aims to establish an imitation task of multi-finger haptics in the context of regular grasping and regrasping processes during activities of daily living. A video guided the 26 healthy, right-handed volunteers through the three phases of the task: (1) fixation of a hand holding a cuboid, (2) observation of the sensori-motor manipulation, (3) imitation of that motor action. fMRI recorded the task; graph analysis of the acquisitions revealed the associated functional cerebral connectivity patterns.

View Article and Find Full Text PDF

ECoGScope: An integrated platform for real-time Electrophysiology and fluorescence imaging.

Biosens Bioelectron

January 2025

Emotion, Cognition, & Behavior Research Group, Korea Brain Research Institute 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea. Electronic address:

In this study, we present ECoGScope, a versatile neural interface platform designed to integrate multiple functions for advancing neural network research. ECoGScope combines an electrocorticography (ECoG) electrode array with a commercial microendoscope, enabling simultaneous recording of ECoG signals and fluorescence imaging. The electrode array, constructed from highly flexible and transparent polymers, ensures conformal contact with the brain surface, allowing unobstructed optical monitoring of neural activity alongside electrophysiological recordings.

View Article and Find Full Text PDF

Background: Acupuncture has been demonstrated to have a promising effect on Alzheimer's disease (AD), but the underlying neural mechanisms remain unclear. The retrosplenial cortex (RSC) is one of the earliest brain regions affected in AD, and changes in its functional connectivity (FC) are reported to underlie disease-associated memory impairment. The aim of this study was to examine the effect of acupuncture on FC with the RSC in patients with AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!