A new method based on convolution kernel compensation (CKC) for decomposing multi-channel surface electromyogram (sEMG) signals is proposed in this paper. Unsupervised learning and clustering function of self-organizing map (SOM) neural network are employed in this method. An initial innervations pulse train (IPT) is firstly estimated, some time instants corresponding to the highest peaks from the initial IPT are clustered by SOM neural network. Then the final IPT can be obtained from the observations corresponding to these time instants. In this paper, the proposed method was tested on the simulated signal, the influence of signal to noise ratio (SNR), the number of groups clustered by SOM and the number of highest peaks selected from the initial pulse train on the number of reconstructed sources and the pulse accuracy were studied, and the results show that the proposed approach is effective in decomposing multi-channel sEMG signals.

Download full-text PDF

Source

Publication Analysis

Top Keywords

neural network
12
method based
8
self-organizing map
8
convolution kernel
8
kernel compensation
8
multi-channel semg
8
decomposing multi-channel
8
semg signals
8
som neural
8
pulse train
8

Similar Publications

Higher Aircraft Noise Exposure Is Linked to Worse Heart Structure and Function by Cardiovascular MRI.

J Am Coll Cardiol

December 2024

UCL MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom; UCL Institute of Cardiovascular Science, University College London, London, United Kingdom; Centre for Inherited Heart Muscle Conditions, Cardiology Department, Royal Free Hospital, London, United Kingdom. Electronic address:

Background: Aircraft noise is a growing concern for communities living near airports.

Objectives: This study aimed to explore the impact of aircraft noise on heart structure and function.

Methods: Nighttime aircraft noise levels (L) and weighted 24-hour day-evening-night aircraft noise levels (L) were provided by the UK Civil Aviation Authority for 2011.

View Article and Find Full Text PDF

In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.

View Article and Find Full Text PDF

Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.

View Article and Find Full Text PDF

Addressing the issue of excessive manual intervention in discharging fermented grains from underground tanks in traditional brewing technology, this paper proposes an intelligent grains-out strategy based on a multi-degree-of-freedom hybrid robot. The robot's structure and control system are introduced, along with analyses of kinematics solutions for its parallel components and end-effector speeds. According to its structural characteristics and working conditions, a visual-perception-based motion control method of discharging fermented grains is determined.

View Article and Find Full Text PDF

With the advancement of service robot technology, the demand for higher boundary precision in indoor semantic segmentation has increased. Traditional methods of extracting Euclidean features using point cloud and voxel data often neglect geodesic information, reducing boundary accuracy for adjacent objects and consuming significant computational resources. This study proposes a novel network, the Euclidean-geodesic network (EGNet), which uses point cloud-voxel-mesh data to characterize detail, contour, and geodesic features, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!