Mutations of the SHANK3 gene have been associated with autism spectrum disorder. Individuals harboring different SHANK3 mutations display considerable heterogeneity in their cognitive impairment, likely due to the high SHANK3 transcriptional diversity. In this study, we report a novel interaction between the Mutated in colorectal cancer (MCC) protein and a newly identified SHANK3 protein isoform in human colon cancer cells and mouse brain tissue. Hence, our proteogenomic analysis identifies a new human long isoform of the key synaptic protein SHANK3 that was not predicted by the human reference genome. Taken together, our findings describe a potential new role for MCC in neurons, a new human SHANK3 long isoform and, importantly, highlight the use of proteomic data towards the re-annotation of GC-rich genomic regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463715PMC
http://dx.doi.org/10.3390/ijms160511522DOI Listing

Publication Analysis

Top Keywords

proteogenomic analysis
8
analysis identifies
8
human shank3
8
long isoform
8
shank3
7
human
5
identifies novel
4
novel human
4
isoform
4
shank3 isoform
4

Similar Publications

Background: Recent advances in Alzheimer's disease (AD) therapeutics involve immunization against amyloid-β (Aβ). Post-mortem brain analysis from the first active Aβ immunotherapy trial indicated clearance of Aβ in some AD patients. Yet, the mechanisms regulating Aβ clearance following immunization remain unknown.

View Article and Find Full Text PDF

Proteogenomic approaches for snake venom protein-based drug development: current trends and challenges.

Trans R Soc Trop Med Hyg

January 2025

Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal 462003, India.

Snake venom proteins have long been recognized for their therapeutic potential. Proteogenomic strategies, integrating transcriptomics and proteomics, have emerged as powerful tools for identifying and characterizing venom proteins for the development of novel therapeutic agents. Analytical techniques like mass spectrometry and next-generation sequencing enable comprehensive analysis, identifying key venom components and their variants.

View Article and Find Full Text PDF

Large-scale proteogenomics characterization of microproteins in Mycobacterium tuberculosis.

Sci Rep

December 2024

Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil.

Tuberculosis remains a burden to this day, due to the rise of multi and extensively drug-resistant bacterial strains. The genome of Mycobacterium tuberculosis (Mtb) strain H37Rv underwent an annotation process that excluded small Open Reading Frames (smORFs), which encode a class of peptides and small proteins collectively known as microproteins. As a result, there is an overlooked part of its proteome that is a rich source of potentially essential, druggable molecular targets.

View Article and Find Full Text PDF

Application of Proteomic Methods in Oomycete Biology.

Methods Mol Biol

December 2024

The Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.

The biochemical makeup of any organism provides insight into key factors regarding its biological functions. These factors can be explored using proteomics, which allows us to obtain a snapshot of the protein content and abundance in an organism, cell type or sub-cellular compartment. Here, we describe proteomic methodologies that can be used to dissect the biochemical mechanism of phytopathogenicity in oomycetes.

View Article and Find Full Text PDF

Advances in multiplex mass spectrometry-based technologies have enabled high-throughput, quantitative proteome profiling of large cohort. However, certain experimental design configurations can amplify sample variability and introduce systematic biases. To address these challenges, we incorporated two novel features in a recent proteogenomic investigation: (1) the inclusion of two reference samples within each mass spectrometry run to serve as internal standards, and (2) the analysis of each specimen as technical replicates across two distinct mass spectrometry runs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!