A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of long-term organic removal on ion exchange properties and performance during sewage tertiary treatment by conventional anion exchange resins. | LitMetric

Effect of long-term organic removal on ion exchange properties and performance during sewage tertiary treatment by conventional anion exchange resins.

Chemosphere

School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China. Electronic address:

Published: October 2015

This study evaluated the long-term dissolved organic matter (DOM), phosphorus and nitrogen removal performance of a commercially available conventional anion exchange resin (AER) from actual secondary effluent (SE) in a sewage treatment plant based on a pilot-scale operation (2.2 m(3) d(-1), 185 cycles, 37,000 bed volume, 1.5 years). Particular emphasis was given to the potential effect of DOM fouling on the ion exchange properties and performance during the long-term operation. Despite the large range of COD (15.6-33.5 mg L(-1)), BOD5 (3.0-5.6 mg L(-1)), DOC (6.5-24.2 mg L(-1)), and UV254 (UV absorption at 254 nm) (0.108-0.229 cm(-1)) levels in the SE, the removal efficiencies of the AER for the aforementioned parameters were 43±12%, 46±15%, 45±9%, and 72±4%, respectively. Based on three-dimensional fluorescence excitation-emission matrix data, i.e., the fluorescence intensities of four regions (peaks A-D), all organic components of the SE were effectively removed (peak A 74%, peak B 48%, peak C 55%, and peak D 45%) following the adsorption. The AER effluent still has considerable polycyclic aromatic hydrocarbons' ecological hazard on freshwater fishes when they were significantly removed from SE. The obvious DOM fouling on the AER, identified by color change, had no significant influence on the long-term removal of the representative inorganic anions (averaging 95±4% phosphate, 100±0% SO4(2-), and 62±17% NO3(-)) and AER properties (including total exchange capacity, moisture content, and true density). The conventional AER can produce high quality reclaimed water from SE at a low operational cost.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.05.002DOI Listing

Publication Analysis

Top Keywords

ion exchange
8
exchange properties
8
properties performance
8
conventional anion
8
anion exchange
8
dom fouling
8
aer
6
exchange
5
long-term
4
long-term organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!