Radical polymerization of 2,3-dimethyl-1,3-butadiene in coordination nanochannels.

Chem Commun (Camb)

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

Published: June 2015

Radical polymerization of unpolymerizable sterically hindered butadiene was successfully performed in the nanochannels of porous coordination polymers because of the effective suppression of unfavourable termination reactions. Microstructures of the resulting polymer could also be tuned depending on the structure of the porous hosts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cc01933hDOI Listing

Publication Analysis

Top Keywords

radical polymerization
8
polymerization 23-dimethyl-13-butadiene
4
23-dimethyl-13-butadiene coordination
4
coordination nanochannels
4
nanochannels radical
4
polymerization unpolymerizable
4
unpolymerizable sterically
4
sterically hindered
4
hindered butadiene
4
butadiene performed
4

Similar Publications

Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent.

View Article and Find Full Text PDF

Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy.

J Am Chem Soc

January 2025

The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China.

Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo.

View Article and Find Full Text PDF

Photodynamic inactivation mediated by natural alizarin on bacteria for the safety of fresh-cut apples.

Food Res Int

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:

Most photosensitizers have limited responsiveness to visible light, however, visible light is a light source with a wide range of wavelengths and the most common in daily life, and making full use of visible light can help to enhance the photodynamic antimicrobial properties of photosensitizers. To tackle this issue, this study confirmed that alizarin has a good absorption capacity for visible light by UV-DRS analysis. Theoretical calculations showed that alizarin might be excited through the charge transfer (CT) mechanism.

View Article and Find Full Text PDF

Protein-Polymer Conjugates as Biocompatible and Recyclable ATRP Catalysts.

Biomacromolecules

January 2025

Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.

Atom transfer radical polymerization (ATRP) is a leading method for creating polymers with precise control over molecular weight, yet its reliance on metal catalysts limits its application in metal-sensitive and environmental contexts. Addressing these limitations, we have developed a recyclable, biocompatible, robust, and tunable ATRP catalyst composed of a protein-polymer-copper conjugate, synthesized by polymerizing an -proline-based monomer onto bovine serum albumin and complexing with Cu(II). The use of this conjugate catalyst maintains ATRP's precision while ensuring biocompatibility with both and HEK 293 cells, and its high molecular weight allows for easy recycling through dialysis.

View Article and Find Full Text PDF

Stable Antifouling and Antibacterial Coating Based on Assembly of Copper-Phenolic Networks.

ACS Appl Bio Mater

January 2025

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.

Biofilm formation on medical devices has become a worldwide issue arising from its resistance to bactericidal agents and presenting challenges to eradicating biofouling adhesion, especially in biological fluids. Metal-phenolic networks have been demonstrated as a versatile and efficient strategy to prevent biofilm formation by endowing medical devices with prolonged antifouling and antibacterial activities in a one-step surface modification. In this study, we report a simple and environmentally friendly method using coordination chemistry between copper ions (Cu) and dopamine-containing copolymer to fabricate metal-phenolic network-based coatings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!