Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765325 | PMC |
http://dx.doi.org/10.1039/c5nr01496d | DOI Listing |
Int J Surg
January 2025
Department of thoracic and cardiovascular surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, China.
Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.
View Article and Find Full Text PDFPancreatic cancer (PC) is one of the leading causes of cancer deaths, associated with a high risk of metastasis and mortality. The long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is highly expressed in multiple types of tumour tissues and may be associated with the growth of PC cells. In this study, we aimed to assess the role and possible mechanisms of MALAT1 in PC progression.
View Article and Find Full Text PDFJ Transl Med
January 2025
Emergency Department, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
Background: Acute respiratory distress syndrome (ARDS) is a life-threatening and heterogeneous disorder leading to lung injury. To date, effective therapies for ARDS remain limited. Sepsis is a frequent inducer of ARDS.
View Article and Find Full Text PDFYakugaku Zasshi
January 2025
Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science.
Chronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitis and emphysema, and current drug treatments is limited to symptomatic therapy. Thus, there is an urgent need for development of new treatments to repair alveolar destruction. To regenerate the destroyed alveoli, we focused on the differentiation of alveolar epithelial progenitor cells into type I or type II alveolar epithelial cells that constitute the alveoli.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Former Japan Bioassay Research Center, Hadano 257-0015, Kanagawa, Japan.
The purpose of the present study is to contribute to the establishment of a standard method for evaluating the adverse effects of nanomaterials by intratracheal administration. Low and high doses of multi-walled carbon nanotubes (MWCNTs) were administered to rats in a single administration or the same final dose as the single administration but divided over four administrations. Bronchoalveolar lavage examination on day 14 showed an inflammatory reaction and cytotoxicity in the lung, generally greater at the higher dose, and tending to be greater in the rats with four administrations at both the low and high doses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!