Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Group IVB transition metal (Zr and Hf) dichalcogenide (TMD) monolayers can have higher carrier mobility and higher tunneling current density than group VIB (Mo and W) TMD monolayers. Here we report the synthesis of hexagonal ZrS2 monolayer and few layers on hexagonal boron nitride (BN) using ZrCl4 and S as precursors. The domain size of ZrS2 hexagons is around 1-3 μm. The number of layers of ZrS2 was controlled by tuning the evaporation temperature of ZrCl4. The stacking angle between ZrS2 and BN characterized by transmission electron microscopy shows a preferred stacking angle of near 0°. Field-effect transistors (FETs) fabricated on ZrS2 flakes showed n-type transport behavior with an estimated mobility of 0.1-1.1 cm(2) V(-1) s(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5b03807 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!