Cancer cell spheroids for screening of chemotherapeutics and drug-delivery systems.

Ther Deliv

Center for Pharmaceutical Biotechnology & Nanomedicine, Northeastern University, 360 Huntington Avenue, 140 The Fenway, Boston, MA 02115, USA.

Published: August 2016

Over the last few decades, the most popular platform to perform high-throughput screening for viable anti-neoplastic compounds has been monolayer cell culture. However, cells in monolayer culture lose many of their in vivo characteristics. As a result, this platform provides a limited predictive value in determining the clinical outcome of the compounds of interest. Using a technique known as 3D spheroid culture, may be the answer to this conundrum. Spheroids have been shown to mimic the tissue-like properties of tumors necessary for the proper evaluation of compounds. In this review, production of cancer cell spheroids, utilization of these spheroids in understanding various therapeutic mechanisms and the potential for their use in high-throughput screening of drugs and drug-delivery systems are discussed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.4155/tde.15.1DOI Listing

Publication Analysis

Top Keywords

cancer cell
8
cell spheroids
8
drug-delivery systems
8
high-throughput screening
8
spheroids
4
spheroids screening
4
screening chemotherapeutics
4
chemotherapeutics drug-delivery
4
systems decades
4
decades popular
4

Similar Publications

Metastasis is a major cause of poor prognosis of pancreatic cancer. Exosomes (Exos) regulate cancer progression by modulating macrophage polarization. This study aimed to investigate the effects of cancer-associated fibroblast (CAF)-released Exos on macrophage polarization in pancreatic cancer and the molecular mechanisms.

View Article and Find Full Text PDF

Mutations that overexpress the epidermal growth factor receptor (EGFR) are linked to cancers like breast (15-20%), head and neck (10-15%), colorectal (5-8%), and non-small cell lung cancer (10-50%), especially in East Asian populations. EGFR activation stimulates "RAS/RAF/MEK/ERK, PI3K/Akt, and MAPK" pathways, which enhance cell division, survival, angiogenesis, and tumor growth while inhibiting apoptosis and metastasis. Secondary mutations (e.

View Article and Find Full Text PDF

Patients participating in clinical trials are highly selected and may not represent the general population. The pivotal study of teclistamab (MajesTEC-1), a B-cell maturation antigen (BCMA)xCD3 bispecific antibody, demonstrated impressive response rates and progression free survival in relapsed/refractory multiple myeloma (RRMM) with acceptable toxicity. We performed a retrospective study of 58 patients treated as standard of care at four US academic centers to determine how these results translated to the real-world.

View Article and Find Full Text PDF

SLC7A5 is required for cancer cell growth under arginine-limited conditions.

Cell Rep

January 2025

Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA. Electronic address:

Tumor cells must optimize metabolite acquisition between synthesis and uptake from a microenvironment characterized by hypoxia, lactate accumulation, and depletion of many amino acids, including arginine. We performed a metabolism-focused functional screen using CRISPR-Cas9 to identify pathways and factors that enable tumor growth in an arginine-depleted environment. Our screen identified the SLC-family transporter SLC7A5 as required for growth, and we hypothesized that this protein functions as a high-affinity citrulline transporter.

View Article and Find Full Text PDF

Senescence is a tumor suppressor mechanism triggered by oncogene expression and chemotherapy treatment. It orchestrates a definitive cessation of cell proliferation through the activation of the p53-p21 and p16-Rb pathways, coupled with the compaction of proliferative genes within heterochromatin regions. Some cancer cells have the ability to elude this proliferative arrest but the signaling pathways involved in circumventing senescence remain to be characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!