Crystal structure of 2-methyl-N-[(4-methyl-pyridin-2-yl)carbamo-thio-yl]benzamide.

Acta Crystallogr E Crystallogr Commun

Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.

Published: May 2015

In the title compound, C15H15N3OS, there is an intra-molecular N-H⋯O hydrogen bond and an intra-molecular C-H⋯S hydrogen bond involving the C=O and C=S bonds which lie on opposite sides of the mol-ecule. The mol-ecule is non-planar with the benzene and pyridine rings being inclined to one another by 26.86 (9)°. In the crystal, mol-ecules are linked by pairs of N-H⋯S hydrogen bonds, forming inversion dimers with an R 2 (2)(8) ring motif. The dimers are linked via C-H⋯S hydrogen bonds, forming slabs parallel to the bc plane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420090PMC
http://dx.doi.org/10.1107/S2056989015007860DOI Listing

Publication Analysis

Top Keywords

hydrogen bond
8
c-h⋯s hydrogen
8
hydrogen bonds
8
bonds forming
8
crystal structure
4
structure 2-methyl-n-[4-methyl-pyridin-2-ylcarbamo-thio-yl]benzamide
4
2-methyl-n-[4-methyl-pyridin-2-ylcarbamo-thio-yl]benzamide title
4
title compound
4
compound c15h15n3os
4
c15h15n3os intra-molecular
4

Similar Publications

Bare silicon dimers on hydrogen-terminated Si(100) have two dangling bonds. These are atomically localized regions of high state density near to and within the bulk silicon band gap. We studied bare silicon dimers as monomeric units.

View Article and Find Full Text PDF

In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations.

View Article and Find Full Text PDF

Hydrogen-bonded cocrystals have attracted considerable attention as they allow fine-tuning of properties through the choice of hydrogen-bond donors and acceptors. In this study, triphenylarsine oxide (PhAsO) is introduced as a strong hydrogen-bond acceptor molecule. Due to its higher Lewis basicity compared to triphenylphosphine oxide (PhPO), it acts as a strong hydrogen-bond acceptor, which is demonstrated in six new cocrystals with HO and -di(hydroperoxy)cycloalkanes.

View Article and Find Full Text PDF

Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants?

Langmuir

January 2025

Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.

In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!