Pseudomonas aeruginosa is a particularly problematic opportunistic pathogen due to its capacity to form recalcitrant biofilm structures, while cohabiting with other harmful/pathogenic species and harboring the capability to release toxins that cause tissue necrosis. Although it is now recognized that the majority of biofilm infections are polymicrobial, little is known about the complex interactions that occur within polymicrobial communities and few tools exist for studying these interactions. In this study, we have designed a microfluidic model that mimics the relevant physiological properties of wound microenvironment, while incorporating materials present in the human extracellular matrix/wound environment. Using microfluidics combined with imaging techniques, we have validated the robustness of our model comparing traditional GFP-tagging to new fluorescent staining techniques to visualize/resolve individual species within a polymicrobial habitat. We have also demonstrated that chemotactic stimuli may be incorporated into our model through specialized ports in our chamber. Our system is specifically designed for use with high resolution imaging techniques, allowing for data collection throughout the life of the biofilm and in real-time. Ultimately, this model can be used to investigate the spatio-temporal mechanobiological structures of the wound environment, and the response of the bacteria to the drug transport which will significantly contribute to our understanding of the development and progression of polymicrobial biofilm infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.25651 | DOI Listing |
JACS Au
December 2024
Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken D-66123, Germany.
is a critical priority pathogen and causes life-threatening acute and biofilm-associated chronic infections. The choice of suitable treatment for complicated infections requires lengthy culturing for species identification from swabs or an invasive biopsy. To date, no fast, pathogen-specific diagnostic tools for infections are available.
View Article and Find Full Text PDFPeerJ
December 2024
Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand.
Background: poses a significant public health threat. Phage-encoded antimicrobial peptides (AMPs) have emerged as promising candidates in the battle against antibiotic-resistant .
Methods: Antimicrobial peptides from the endolysin of bacteriophage were designed from bacteriophage vB_AbaM_PhT2 and vB_AbaAut_ChT04.
Biomed Res Int
December 2024
Department of Biochemistry & Chemistry, Sylhet Agricultural University, Sylhet, Bangladesh.
Emerging multidrug-resistant (MDR) strains are the main challenges to the progression of new drug discovery. To diminish infectious disease-causing pathogens, new antibiotics are required while the drying pipeline of potent antibiotics is adding to the severity. Plant secondary metabolites or phytochemicals including alkaloids, phenols, flavonoids, and terpenes have successfully demonstrated their inhibitory potential against the drug-resistant pathogens.
View Article and Find Full Text PDFNanotechnol Sci Appl
December 2024
Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
Purpose: Biofilms are one of the main threats related to bacteria. Owing to their complex structure, in which bacteria are embedded in the extracellular matrix, they are extremely challenging to eradicate, especially since they can inhabit both biotic and abiotic surfaces. This study aimed to create an effective antibiofilm nanofilm based on graphene oxide-metal nanoparticles (GOM-NPs).
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Biology, Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany. Electronic address:
Pseudomonas aeruginosa is a hard-to-treat human pathogen for which new antimicrobial agents are urgently needed. P. aeruginosa is known for forming biofilms, a complex aggregate of bacteria embedded in a self-generated protective matrix that enhance its resistance to antibiotics and the immune system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!