Active but inoperable thrombin is accumulated in a plasma protein layer surrounding Streptococcus pyogenes.

Thromb Haemost

Clément Naudin, Department of Clinical Sciences, Division of Infection Medicine, Lund University, Biomedical Center (BMC), Floor B14, Tornavägen 10, 22184 Lund, Sweden, Tel.: + 46 46 2226807, Fax: + 46 46 157756, E-mail:

Published: October 2015

Activation of thrombin is a critical determinant in many physiological and pathological processes including haemostasis and inflammation. Under physiological conditions many of these functions are involved in wound healing or eradication of an invading pathogen. However, when activated systemically, thrombin can contribute to severe and life-threatening conditions by causing complications such as multiple multi-organ failure and disseminated intravascular coagulation. In the present study we investigated how the activity of thrombin is modulated when it is bound to the surface of Streptococcus pyogenes. Our data show that S. pyogenes bacteria become covered with a proteinaceous layer when incubated with human plasma, and that thrombin is a constituent of this layer. Though the coagulation factor is found attached to the bacteria with a functional active site, thrombin has lost its capacity to interact with its natural substrates and inhibitors. Thus, the interaction of bacteria with human plasma renders thrombin completely inoperable at the streptococcal surface. This could represent a host defense mechanism to avoid systemic activation of coagulation which could be otherwise induced when bacteria enter the circulation and cause systemic infection.

Download full-text PDF

Source
http://dx.doi.org/10.1160/TH15-02-0127DOI Listing

Publication Analysis

Top Keywords

streptococcus pyogenes
8
human plasma
8
thrombin
7
active inoperable
4
inoperable thrombin
4
thrombin accumulated
4
accumulated plasma
4
plasma protein
4
protein layer
4
layer surrounding
4

Similar Publications

Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.

View Article and Find Full Text PDF

Streptococcal pyogenic exotoxins (Spe proteins) secreted by (group A , GAS) are responsible for scarlet fever and streptococcal toxic shock syndrome. Most Spes are superantigens that cause excessive inflammation by activating large numbers of T cells. However, Streptococcal pyogenic exotoxin B (SpeB) is an exception, which is pro-inflammatory through its protease activity.

View Article and Find Full Text PDF

is a Gram-positive bacterium, also known as Group A (GAS), that has become a significant threat to the healthcare system, infecting more than 18 million people and resulting in more than 500,000 deaths annually worldwide. GAS infection rates decreased gradually during the 20th century in Western countries, largely due to improved living conditions and access to antibiotics. However, post-COVID-19, the situation has led to a steep increase in GAS infection rates in Europe, the United States, Australia, and New Zealand, which triggers a global concern.

View Article and Find Full Text PDF

The potential of and bacteriocins in synergistic control of .

Prep Biochem Biotechnol

January 2025

Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania.

has developed resistance to most conventional antibiotics and is a causative agent of serious infections. Alternative therapies are urgently needed. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, including () and (), and represent a potential solution.

View Article and Find Full Text PDF

An in-situ forming controlled release soft hydrogel-based C5a peptidase drug delivery system to treat psoriasis.

Int J Pharm

January 2025

Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland; SSPC Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Ireland. Electronic address:

The potent pro-inflammatory cytokine, interferon gamma (IFN-γ), is an enticing therapeutic target because of its accelerator role in several acute and chronic inflammatory processes. In this work, poloxamer 407 is developed as an in-situ gelling polymer for a long-acting formulation to deliver a serine protease, C5a peptidase (ScpA) from Streptococcus pyogenes. ScpA is well known for its activity against the complement factor C5a but has also recently been shown to cleave IFN-γ in vitro into inactive fragments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!