Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis.

Asian J Androl

Department of Biochemistry and Molecular Biology;Department of Anatomy and Developmental Biology, Monash University; Hudson Institute of Medical Research, Monash Medical Centre; School of Clinical Sciences, Monash University, Clayton, VIC, Australia, .

Published: March 2016

Importin proteins were originally characterized for their central role in protein transport through the nuclear pores, the only intracellular entry to the nucleus. This vital function must be tightly regulated to control access by transcription factors and other nuclear proteins to genomic DNA, to achieve appropriate modulation of cellular behaviors affecting cell fate. Importin-mediated nucleocytoplasmic transport relies on their specific recognition of cargoes, with each importin binding to distinct and overlapping protein subsets. Knowledge of importin function has expanded substantially in regard to three key developmental systems: embryonic stem cells, muscle cells and the germ line. In the decade since the potential for regulated nucleocytoplasmic transport to contribute to spermatogenesis was proposed, we and others have shown that the importins that ferry transcription factors into the nucleus perform additional roles, which control cell fate. This review presents key findings from studies of mammalian spermatogenesis that reveal potential new pathways by which male fertility and infertility arise. These studies of germline genesis illuminate new ways in which importin proteins govern cellular differentiation, including via directing proteins to distinct intracellular compartments and by determining cellular stress responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492042PMC
http://dx.doi.org/10.4103/1008-682X.154310DOI Listing

Publication Analysis

Top Keywords

importin proteins
12
cell fate
12
transcription factors
8
nucleocytoplasmic transport
8
importin
5
proteins
5
putting things
4
things place
4
place fertilization
4
fertilization discovering
4

Similar Publications

Sequence specificity of an essential nuclear localization sequence in Mcm3.

PLoS Genet

January 2025

Biomedical Science Graduate Program, University of California San Diego, San Diego, California, United States of America.

Proteins with nuclear localization sequences (NLSs) are directed into the cell nucleus through interactions between the NLS and importin proteins. NLSs are generally short motifs rich in basic amino acids; however, identifying NLSs can be challenging due to the lack of a universally conserved sequence. In this study, we characterized the sequence specificity of an essential and conserved NLS in Mcm3, a subunit of the replicative DNA helicase.

View Article and Find Full Text PDF

Single-molecule microscopy reveals that importin α slides along DNA while transporting cargo molecules.

Biochem Biophys Res Commun

January 2025

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan; Faculty of Engineering and Graduate School of Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan. Electronic address:

Importin α is a crucial player in the nucleocytoplasmic transport of nuclear localization signal (NLS)-containing cargo proteins and is suggested to bind to DNA directly. We hypothesized that importin α, after binding to DNA, may move along DNA via sliding or hopping. We investigated the movement dynamics of importin αs fused to AcGFP along DNA using single-molecule fluorescence microscopy and single-tethered DNA arrays.

View Article and Find Full Text PDF

Blocking p85β nuclear translocation by importazole enhances Alpelisib efficacy against PIK3CA-helical-domain-mutant tumors.

Biochem Biophys Res Commun

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China; Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. Electronic address:

PIK3CA, which encodes protein p110α, is one of the most frequently mutated oncogenes and a promising drug-target for human cancer. Previously, we demonstrate that p85β is released from PI3K complex which contain PIK3CA helical domain mutations and translocates into nucleus to regulate tri-methylation of H3K27, thereby promoting tumorigenicity. Here, we identify DIRAS2 and SOWAHB as target genes of nuclear p85β in PIK3CA-helical-domain-mutant tumors.

View Article and Find Full Text PDF

Osteoporosis is mainly caused by an imbalance in osteoclast and osteoblast regulation, resulting in an imbalance in bone homeostasis. Ginsenoside Rg3 (Rg3) has been reported to have a therapeutic effect on alleviating osteoporosis. Nonetheless, the underlying mechanisms have not been completely elucidated.

View Article and Find Full Text PDF

Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!