Imaging the amygdala with functional MRI is confounded by multiple averse factors, notably signal dropouts due to magnetic inhomogeneity and low signal-to-noise ratio, making it difficult to obtain consistent activation patterns in this region. However, even when consistent signal changes are identified, they are likely to be due to nearby vessels, most notably the basal vein of rosenthal (BVR). Using an accelerated fMRI sequence with a high temporal resolution (TR = 333 ms) combined with susceptibility-weighted imaging, we show how signal changes in the amygdala region can be related to a venous origin. This finding is confirmed here in both a conventional fMRI dataset (TR = 2000 ms) as well as in information of meta-analyses, implying that "amygdala activations" reported in typical fMRI studies are likely confounded by signals originating in the BVR rather than in the amygdala itself, thus raising concerns about many conclusions on the functioning of the amygdala that rely on fMRI evidence alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440210 | PMC |
http://dx.doi.org/10.1038/srep10499 | DOI Listing |
Aims: ultrasound (US) diagnosis of enthesitis is burdened of low specificity, especially when it is performed in patients with psoriasis (PsO) but without clinical psoriatic arthritis (PsA), because of mechanical, dysmetabolic and age-related concurrent enthesopatic changes. We propose a novel US score to quantify the cortical-entheseal bone remodeling burden of several peripheral entheses, aiming to improve the specificity of US for PsA-related enthesitis, and to evaluate its diagnostic value in PsO patients with subsequent diagnosis of psoriatic arthritis (PsO/PsA).
Methods: clinical and US data of 119 consecutive patients with moderate/severe PsO and nonspecific musculoskeletal symptoms, were included in this retrospective study.
J Recept Signal Transduct Res
January 2025
Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
Serotonin (5-HT) is a neurotransmitter found throughout the human body that regulates many physiological events arising from the brain and central nervous system (CNS), such as sleep and appetite. However, it has many other functions in systems outside. In addition to the routine expression of 5-HT7 receptors in CNS regions, such as the pituitary gland, spinal cord, and hippocampus, many studies have reported the expression of these receptors in pathological conditions outside.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Faculty of Biosciences, Fisheries and Economics, UiT─The Arctic University of Norway, 9019 Tromsø, Norway.
The choice of organism to host a genetic circuit, the chassis, is often defaulted to model organisms due to their amenability. The chassis-design space has therefore remained underexplored as an engineering variable. In this work, we explored the design space of a genetic toggle switch through variations in nine ribosome binding site compositions and three host contexts, creating 27 circuit variants.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Food Sciences and Technology, National Taiwan University, 10617 Taipei, Taiwan.
Obesity-induced muscle alterations, such as inflammation, metabolic dysregulation, and myosteatosis, lead to a decline in muscle mass and function, often resulting in sarcopenic obesity. Currently, there are no definitive treatments for sarcopenic obesity beyond lifestyle changes and dietary supplementation. Feruloylacetone (FER), a thermal degradation product of curcumin, and its analog demethoxyferuloylacetone (DFER), derived from the thermal degradation of bisdemethoxycurcumin, have shown potential antiobesity effects in previous studies.
View Article and Find Full Text PDFImmunol Rev
January 2025
Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
Rather than being contained in a single polypeptide, and unlike receptor tyrosine kinases, the T cell receptor (TCR) divides its signaling functions among its subunits: TCRα/β bind the extracellular ligand, an antigenic peptide-MHC complex (pMHC), and the CD3 subunits (CD3γ, CD3δ, CD3ε, and CD3ζ) transmit this information to the cytoplasm. How information about the quality of pMHC binding outside is transmitted to the cytoplasm remains a matter of debate. In this review, we compile data generated using a wide variety of experimental systems indicating that TCR engagement by an appropriate pMHC triggers allosteric changes transmitted from the ligand-binding loops in the TCRα and TCRβ subunits to the cytoplasmic tails of the CD3 subunits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!