The brain during developmental period is thought to be highly sensitive to environmental insults including exposure to chemicals. However, it has been extremely difficult to detect and assess the features and degree of adversity particularly at low exposure levels. I describe here the effects of maternal exposure to dioxin on higher brain functions later in life, which we detected using our originally developed behavioral tests for quantifying higher brain functions in rodents. We first found changes in the mRNA expression levels of glutamate NMDA receptor subunits that have critical roles in learning and memory function in the neocortex and hippocampus. To assess the neocortical and hippocampal functions in rats, we established novel behavioral tests for assessing paired-associate learning, which is the hippocampal and medial prefrontal NMDA-dependent function. Maternal exposure to dioxin, at a low level of which does not affect simple memory formation, resulted in the disturbance of the paired-associate learning. On the basis of the above learning paradigm, we next developed a behavioral flexibility task and a social competitive task for mice using the automated behavioral assessment system ‘IntelliCage’: this system can accommodate 16 mice at the same time to monitor and record their behavior. Using this system, we found that male mice born to dams exposed to very low doses of dioxin showed inflexibility in a serial reversal learning task and socially low-dominance behavior under a competitive situation. Immunohistochemical analysis of putative neuronal activity markers revealed hypoactivity in the medial prefrontal cortex (mPFC) of dioxin-exposed mice. We speculate that mPFC hypoactivity reflects the dioxin-induced higher brain dysfunction and may be associated with some psychiatric illnesses and related problems. These behavioral tests were found to be useful for studying the higher brain functions of rats and mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1265/jjh.70.120 | DOI Listing |
NPJ Sci Food
December 2024
Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan.
In a series of studies on blood-brain barrier transportable peptides, a soybean dipeptide, Tyr-Pro, penetrated the mouse brain parenchyma after oral intake and improved short and long memory impairment in acute Alzheimer's model mice. Here, we aimed to clarify the anti-dementia effects of this peptide administered to SAMP8 mice prior to dementia onset. At the end of the 25-week protocol in 16-week-old SAMP8 mice, Tyr-Pro (10 mg/kg/day) significantly improved the reduced spatial learning ability compared with that in the control and amino acid (Tyr + Pro) groups as indicated by the results of Morris water maze tests conducted for five consecutive days.
View Article and Find Full Text PDFNat Commun
December 2024
Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US.
The correlational structure of brain activity dynamics in the absence of stimuli or behavior is often taken to reveal intrinsic properties of neural function. To test the limits of this assumption, we analyzed peripheral contributions to resting state activity measured by fMRI in unanesthetized, chemically immobilized male rats that emulate human neuroimaging conditions. We find that perturbation of somatosensory input channels modifies correlation strengths that relate somatosensory areas both to one another and to higher-order brain regions, despite the absence of ostensible stimuli or movements.
View Article and Find Full Text PDFNat Commun
December 2024
Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.
View Article and Find Full Text PDFTransl Psychiatry
December 2024
School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
Bipolar disorder (BD) is a neuropsychiatric disorder characterized by severe disturbance and fluctuation in mood. Dynamic functional connectivity (dFC) has the potential to more accurately capture the evolving processes of emotion and cognition in BD. Nevertheless, prior investigations of dFC typically centered on larger time scales, limiting the sensitivity to transient changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!