The aim of this study was to investigate functional connectivity between right and left insulae in the human brain. We studied a patient with implanted depth electrodes for epilepsy surgery evaluation with stereotactically placed symmetric depth electrodes in both insulae. Bipolar 1 Hz electrical stimulation of the right and left posterior short gyri in the anterior insula evoked responses in the contralateral insular structures. These responses showed a latency of 8-24 ms. This report demonstrates for the first time bi-directional homotopic and heterotopic functional connectivity between right and left anterior insulae. The short latency of the evoked responses suggests mono- or oligo-synaptic connections, most likely via the corpus callosum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00429-015-1065-0DOI Listing

Publication Analysis

Top Keywords

functional connectivity
12
connectivity left
8
depth electrodes
8
evoked responses
8
homotopic reciprocal
4
reciprocal functional
4
connectivity anterior
4
anterior human
4
insulae
4
human insulae
4

Similar Publications

Language is a sophisticated cognitive skill that relies on the coordinated activity of cerebral cortex. Acquiring a second language creates intricate modifications in brain connectivity. Although considerable studies have evaluated the impact of second language acquisition on brain networks in adulthood, the results regarding the ultimate form of adaptive plasticity remain inconsistent within the adult population.

View Article and Find Full Text PDF

Renovascular hypertension is the second leading cause of hypertension. Twenty-seven genes have been attributed to monogenic renovascular hypertension at present. We present a 15-year-old boy with facial dysmorphism, thick skin and renovascular hypertension with a novel gain-of-function variant in SMAD4 gene suggesting Myhre syndrome.

View Article and Find Full Text PDF

Continuous microenvironment modulation is an ongoing challenge in wound dressing, which includes excessive exudate absorption, oxygen delivery, bacterial inhibition and angiogenesis. Herein, we developed an construction strategy to fabricate a self-retaining double-layered wound dressing, where the top layer precursor was composed of Ca-containing polyvinyl butyral (PVB) solution dispersed with hydroxypropyl methylcellulose (HPMC) particles, and the bottom one consisted of sodium alginate (Alg) solution blended with Ag-doped mesoporous bioactive glass powders (Ag-MBG). When in use, both precursors were simultaneously squeezed out from the twin nozzles connected to the individual chambers of a twin-chambered syringe, whereby Ca in the top layer rapidly migrated downwards to crosslink Alg in the bottom layer, leading to the formation of an Alg/Ag-MBG (AA) functional hydrogel for filling an irregular wound.

View Article and Find Full Text PDF

Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord.

View Article and Find Full Text PDF

Objective: Disorders of arousal (DoA) are characterized by an intermediate state between wakefulness and deep sleep, leading to incomplete awakenings from NREM sleep. Multimodal studies have shown subtle neurophysiologic alterations even during wakefulness in DoA. The aim of this study was to explore the brain functional connectivity in DoA and the metabolic profile of the anterior and posterior cingulate cortex, given its pivotal role in cognitive and emotional processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!