Measurement of extracellular ion fluxes using the ion-selective self-referencing microelectrode technique.

J Vis Exp

Department of Dermatology, Institute for Regenerative Cures, University of California, Davis; Department of Ophthalmology, Institute for Regenerative Cures, University of California, Davis.

Published: May 2015

AI Article Synopsis

  • Cell membranes act as barriers that separate the cytoplasm from the outside environment, with selective permeability and ion transport being key to maintaining ion distribution.
  • The ion-selective self-referencing microelectrode measures specific ion fluxes like calcium, potassium, and sodium at the cellular and tissue levels through fluctuations in electric potential based on ion concentration.
  • This paper explains the technique for measuring extracellular ion fluxes using the microelectrode and provides representative results to illustrate its effectiveness.

Article Abstract

Cells from animals, plants and single cells are enclosed by a barrier called the cell membrane that separates the cytoplasm from the outside. Cell layers such as epithelia also form a barrier that separates the inside from the outside or different compartments of multicellular organisms. A key feature of these barriers is the differential distribution of ions across cell membranes or cell layers. Two properties allow this distribution: 1) membranes and epithelia display selective permeability to specific ions; 2) ions are transported through pumps across cell membranes and cell layers. These properties play crucial roles in maintaining tissue physiology and act as signaling cues after damage, during repair, or under pathological condition. The ion-selective self-referencing microelectrode allows measurements of specific fluxes of ions such as calcium, potassium or sodium at single cell and tissue levels. The microelectrode contains an ionophore cocktail which is selectively permeable to a specific ion. The internal filling solution contains a set concentration of the ion of interest. The electric potential of the microelectrode is determined by the outside concentration of the ion. As the ion concentration varies, the potential of the microelectrode changes as a function of the log of the ion activity. When moved back and forth near a source or sink of the ion (i.e. in a concentration gradient due to ion flux) the microelectrode potential fluctuates at an amplitude proportional to the ion flux/gradient. The amplifier amplifies the microelectrode signal and the output is recorded on computer. The ion flux can then be calculated by Fick's law of diffusion using the electrode potential fluctuation, the excursion of microelectrode, and other parameters such as the specific ion mobility. In this paper, we describe in detail the methodology to measure extracellular ion fluxes using the ion-selective self-referencing microelectrode and present some representative results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541607PMC
http://dx.doi.org/10.3791/52782DOI Listing

Publication Analysis

Top Keywords

ion
12
ion-selective self-referencing
12
self-referencing microelectrode
12
cell layers
12
microelectrode
9
extracellular ion
8
ion fluxes
8
fluxes ion-selective
8
cell membranes
8
membranes cell
8

Similar Publications

Solar-Driven Nanofluidic Ion Regulation for Fractional Salt Crystallization and Reutilization.

ACS Nano

January 2025

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Solar water evaporation (SWE) has emerged as an appealing method for water and salt recovery from hypersaline wastewater. However, different ions usually transfer and accumulate uncontrollably during ion-water separation, making salt fractionalization impractical for conventional SWE, and the resulting mixed salts are hard to use and still require significant costs for disposal. To achieve salt fractionalization and reutilization, achieving ion-water and ion-ion separation simultaneously are crucial in advancing SWE toward sustainability.

View Article and Find Full Text PDF

Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.

View Article and Find Full Text PDF

The molecular basis for the liquid-liquid phase separation (LLPS) behavior of various biomolecular components in the cell is the formation of multivalent and low-affinity interactions. When the content of these components exceeds a certain critical concentration, the molecules will spontaneously coalesce to form a new liquid phase; i.e.

View Article and Find Full Text PDF

Proteomics- and metabolomics-based analysis of the regulation of germination in Norway maple and sycamore embryonic axes.

Tree Physiol

January 2025

Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France.

Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively.

View Article and Find Full Text PDF

ToF-SIMS Parallel Imaging MS/MS of Lead Soaps in Embedded Paint Cross Sections.

Anal Chem

January 2025

Maastricht MultiModal Molecular Imaging (M4i) Institute, Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands.

In the field of cultural heritage, and more specifically in oil paintings, the ability to unambiguously identify and locate metal soaps is of great interest for a better understanding of painting degradation. Here, we demonstrate the use of a Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) instrument capable of tandem mass spectrometry imaging for the unambiguous identification and localization of lead soaps in cross sections of samples of old oil paintings at high spatial resolution. It is shown that the specific fragmentation pattern of lead soaps is dictated by the loss of the lead ion and that fragmentation occurs on the hydrocarbon chains of the fatty acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!