The thermal stability and strength of interactions in proteins are commonly measured using isothermal calorimetry and differential scanning calorimetry providing a measurement that averages over structural transitions that occur as the proteins melt and dissociate. Here, we apply variable temperature ion mobility mass spectrometry (VT-IM-MS) to study the effect of temperature on the stability and structure of four multimeric protein complexes. VT-IM-MS is used here to investigate the change in the conformation of model proteins, namely, transthyretin (TTR), avidin, concanavalin A (conA), and human serum amyloid P component (SAP) at elevated temperatures prior, during, and after dissociation up to 550 K. As the temperature of the buffer gas is increased from 300 to 350 K, a small decrease in the collision cross sections ((DT)CCS(He)) of protein complexes from the values at room temperature is observed, and is associated with complex compaction occurring close to the reported solution T(m). At significantly higher temperatures, each protein complex undergoes an increase in (DT)CCS(He) and in the width of arrival time distributions (ATD), which is attributed to extensive protein unfolding, prior to ejection of a highly charged monomer species. This approach allows us to decouple the distinct gas phase melting temperature (T(m)) from the temperature at which we see subunit dissociation. The thermally induced dissociation (TID) mechanism is observed to initially proceed via the so-called "typical" (CID) dissociation route. Interestingly, data collected at higher analysis temperature suggests that the TID process might be adapting more "atypical" dissociation route.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5b01063 | DOI Listing |
Plant Cell Rep
January 2025
Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.
We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
Tick salivary proteins are crucial for efficient and successful tick feeding. Most of them are still uncharacterized, especially those involved in the formation of tick cement. Tick salivary protein PA107 is a putative cement protein, which is transcribed in salivary glands during the initial phase of tick feeding.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
Reducing endogenous CK levels accelerates fruit ripening in tomato by regulating ethylene biosynthesis and signalling pathway. Tomato is a typical climacteric fruit and is recognized as one of the most important horticultural crops globally. The ripening of tomato fruits is a complex process, highly regulated by phytohormones.
View Article and Find Full Text PDFBr J Radiol
January 2025
Division of Nuclear Medicine and Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Theranostics has its roots with the first radioiodine therapy for thyroid diseases in about 80 years ago. More recently the field has experienced a remarkable renascence with the regulatory approval of paired imaging and radiopharmaceutical therapy agents in gastroenteropancreatic neuroendocrine tumors and metastatic castration-resistant prostate cancer that are now employed in routine clinical practice. The momentum is strong for identification and testing of new theranostic agents for use in various cancers and finding new clinical incications of the available agents.
View Article and Find Full Text PDFPlant Cell
December 2024
Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!