In the field of implantable titanium-based biomaterials, infections and inflammations are the most common forms of postoperative complications. The controlled local delivery of therapeutics from implants through polyelectrolyte multilayers (PEMs) has recently emerged as a versatile technique that has shown great promise in the transformation of a classical medical implant into a drug delivery system. Herein, we report the design and the elaboration of new biodegradable multidrug-eluting titanium platforms based on a polyelectrolyte multilayer bioactive coating that target infections. These systems were built up in mild conditions according to the layer-by-layer (L-b-L) assembly and incorporate two biocompatible polysaccharides held together through electrostatic interactions. A synthetic, negatively charged β-cyclodextrin-based polymer (PCD), well-known for forming stable and reversible complexes with hydrophobic therapeutic agents, was exploited as a multidrug reservoir, and chitosan (CHT), a naturally occurring, positively charged polyelectrolyte, was used as a barrier for controlling the drug delivery rate. These polyelectrolyte multilayer films were strongly attached to the titanium surface through a bioinspired polydopamine (PDA) film acting as an adhesive first layer and promoting the robust anchorage of PEMs onto the biomaterials. Prior to the multilayer film deposition, the interactions between both oppositely charged polyelectrolytes, as well the multilayer growth, were monitored by employing surface plasmon resonance (SPR). Several PEMs integrating 5, 10, and 15 bilayers were engineered using the dip coating strategy, and the polyelectrolyte surface densities were estimated by colorimetric titrations and gravimetric analyses. The morphologies of these multilayer systems, as well as their naturally occurring degradation in a physiological medium, were investigated by scanning electron microscopy (SEM), and their thicknesses were measured by means of profilometry and ellipsometry studies. Finally, the ability of the coated titanium multilayer devices to act as a drug-eluting system and to treat infections was validated with gentamicin, a relevant water-soluble antibiotic commonly used in medicine due to its broad bactericidal spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b02402 | DOI Listing |
Database (Oxford)
January 2025
Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON CA K1A 0C6, Canada.
It is well-known that the use of vocabulary in phenotype treatments is often inconsistent. An earlier survey of biologists who create or use phenotypic characters revealed that this lack of standardization leads to ambiguities, frustrating both the consumers and producers of phenotypic data. Such ambiguities are challenging for biologists, and more so for Artificial Intelligence, to resolve.
View Article and Find Full Text PDFFreestanding birth centers (FBCs) in Brazil are regulated to provide care for women with a straightforward pregnancy. The systematization of the literature on FBCs can broaden our knowledge of these facilities. We conducted a scoping review to answer the following research question: "What are the characteristics of the model of care in freestanding birth centers in Brazil?".
View Article and Find Full Text PDFAnal Chem
January 2025
Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Droplet-based microfluidics is a powerful tool for high-throughput analysis of liquid samples with significant applications in biomedicine and biochemistry. Nevertheless, extracting content-rich information from single picolitre-sized droplets at high throughputs remains challenging due to the weak signals associated with these small volumes. Overcoming this limitation would be transformative for fields that rely on high-throughput screening, enabling broader multiparametric analysis.
View Article and Find Full Text PDFSci Adv
January 2025
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China.
Contextuality is a hallmark feature of the quantum theory that captures its incompatibility with any noncontextual hidden-variable model. The Greenberger-Horne-Zeilinger (GHZ)-type paradoxes are proofs of contextuality that reveal this incompatibility with deterministic logical arguments. However, the GHZ-type paradox whose events can be included in the fewest contexts and that brings the strongest nonclassicality remains elusive.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!