Simplified type 3 implant placement, after alveolar ridge preservation: a case study.

Oral Implantol (Rome)

Periodontology Department, University of Rome "Tor Vergata", Isola Tiberina Fatebenefratelli, Rome, Italy.

Published: May 2015

Alveolar ridge, after tooth extraction, could reduce its volume up to 50% in buccal-lingual width in the first twelve months and residual dimensions could interfere with correct three dimensional placement of implants and influence negatively treatment outcomes with regard to function and aesthetic aspects. Over the last decades, several approaches have been proposed and tested in order to prevent ridge volumetric contraction and provide maximum bone availability for implant procedure. This article presents a case study with a single anterior tooth replacement, illustrating socket seal technique followed by a type 3 timing implant placement. Immediately after tooth extraction, residual socket was grafted using Deproteinized Bovine Bone Mineral and a free gingival punch harvested from palate. After 3 months, a root-form titanium implant was inserted without additional regenerative procedures. Follow-up examination revealed favourable preservation of soft tissue width and height in the aesthetic area. Socket seal approach maximizes soft tissue healing, preserving ridge envelope and the subsequent implant placement, furthermore, results simplified, as any augmentation techniques are required. Clinical advantages of this method include predictable preservation of the soft tissues, favourable healing features, easy handling of graft materials and a positive benefit-cost ratio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402685PMC

Publication Analysis

Top Keywords

implant placement
12
alveolar ridge
8
case study
8
tooth extraction
8
socket seal
8
preservation soft
8
soft tissue
8
implant
5
simplified type
4
type implant
4

Similar Publications

A prediction method and evaluation for assessing guide-supported dental implant accuracy.

Comput Methods Biomech Biomed Engin

February 2025

Zhejiang Weilian Technology Co., Ltd, Jiaxing, China.

Functional and esthetic results require accurate implant placement. We aimed to develop a predictive method for assessing dental implant accuracy, and to evaluate the cumulative system influence of surgical guides. A mathematical model was constructed to determine the influence of surface changes on a specific point, using Jacobian matrix expressions.

View Article and Find Full Text PDF

Background: The placement of breast implants in a prepectoral plane has become increasingly popular in breast reconstruction, although data on how this affects radiation delivery in women with breast cancer are limited. This study aimed to assess the dosimetric differences in radiation plans for immediate breast reconstruction between prepectoral and subpectoral implants.

Methods: In this study, a retrospective review and dosimetric analysis of patients with breast cancer who underwent immediate implant-based reconstruction and postmastectomy radiation therapy (PMRT) were performed.

View Article and Find Full Text PDF

Purpose: Bone expansion is one of the quickest, simplest, and most reliable methods of alveolar ridge augmentation for implant placement. This systematic review is designed to investigate the outcomes of the bone expansion technique for horizontal ridge augmentation.

Methods: The protocol of study has been prospectively registered into PROSPERO (CRD42023414686).

View Article and Find Full Text PDF

Background/purpose: Many designs of static computer-assisted implant surgery (sCAIS) are available for clinician to achieve proper implant position. However, there were not any studies that approached the design alone to evaluate whether sleeve-in-sleeve or sleeve-on-drill design provided most accuracy implant position. The purpose of this study was to investigate the precision of implant placement with sleeve-in-sleeve and sleeve-on-drill static computer assisted implant surgery (sCAIS) designs.

View Article and Find Full Text PDF

Background/purpose: Computer-assisted implant surgery (CAIS) is increasingly performed to reduce deviations in implant position. Dynamic CAIS or navigation systems provide instant display of implant drilling instruments and patient positions directly on the computer monitor. Augmented reality (AR) technology allows operators to visualize real-time information projected onto the lenses of AR glasses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!