Whole transcriptome shotgun sequencing (RNA-Seq) is a useful tool for analyzing the transcriptome of a biological sample. With appropriate statistical and bioinformatic processing, this platform is capable of identifying significant differences in gene expression within the transcriptome and permits pathway and network analyses to determine how these genes interact biologically. In this study, we examined gene expression in two lung adenocarcinoma cell lines (H358 and A459) that were treated with transforming growth factor-β (TGF-β) as a model for induction of the epithelial-to-mesenchymal transition (EMT), commonly associated with disease progression. We performed this study in order to illustrate a workflow for identifying interesting genes and processes that are regulated early in EMT and to determine their gene pathway/network relationships and regulation. With this, we identified 137 upregulated and 32 downregulated genes common to both cell lines after TGF-β treatment that represent components of multiple canonical pathways and biological networks associated with the induction of EMT. These findings were also verified against reposited Affymetrix U133a expression profiles from multiple trials examining metastatic progression in patient cohorts (n = 731 total) to further establish the clinical relevance and translational significance of the model system. Together, these findings help validate the relevance of the TGF-β model for the study of EMT and provide new insights into early events in EMT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384765PMC
http://dx.doi.org/10.4137/CIN.S14073DOI Listing

Publication Analysis

Top Keywords

cell lines
12
gene expression
8
tgf-β model
8
emt
5
rna-seq network
4
network analysis
4
analysis revealed
4
revealed interacting
4
interacting pathways
4
pathways tgf-β-treated
4

Similar Publications

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!