A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

RNA-Seq and Network Analysis Revealed Interacting Pathways in TGF-β-Treated Lung Cancer Cell Lines. | LitMetric

Whole transcriptome shotgun sequencing (RNA-Seq) is a useful tool for analyzing the transcriptome of a biological sample. With appropriate statistical and bioinformatic processing, this platform is capable of identifying significant differences in gene expression within the transcriptome and permits pathway and network analyses to determine how these genes interact biologically. In this study, we examined gene expression in two lung adenocarcinoma cell lines (H358 and A459) that were treated with transforming growth factor-β (TGF-β) as a model for induction of the epithelial-to-mesenchymal transition (EMT), commonly associated with disease progression. We performed this study in order to illustrate a workflow for identifying interesting genes and processes that are regulated early in EMT and to determine their gene pathway/network relationships and regulation. With this, we identified 137 upregulated and 32 downregulated genes common to both cell lines after TGF-β treatment that represent components of multiple canonical pathways and biological networks associated with the induction of EMT. These findings were also verified against reposited Affymetrix U133a expression profiles from multiple trials examining metastatic progression in patient cohorts (n = 731 total) to further establish the clinical relevance and translational significance of the model system. Together, these findings help validate the relevance of the TGF-β model for the study of EMT and provide new insights into early events in EMT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384765PMC
http://dx.doi.org/10.4137/CIN.S14073DOI Listing

Publication Analysis

Top Keywords

cell lines
12
gene expression
8
tgf-β model
8
emt
5
rna-seq network
4
network analysis
4
analysis revealed
4
revealed interacting
4
interacting pathways
4
pathways tgf-β-treated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!