As the major barrier to curative cancer chemotherapy, chemoresistance presents a formidable challenge to both cancer researchers and clinicians. We have previously shown that the bladder cancer (BCa) cell line 5637 is significantly more sensitive to the cytoxicity of five chemotherapeutic agents than H-bc cells. Using an RNA-seq-based omic analysis and validation at both the mRNA and protein levels, we found that the inhibitor of growth 5 (ING5) gene was upregulated in 5637 cells compared with H-bc cells, indicating that it has an inhibitory role in BCa chemoresistance. siRNA-mediated inhibition of ING5 increased the chemoresistance and inhibited the DNA damage response pathway in 5637 cells. Conversely, forced expression of EGFP-ING5 decreased the chemoresistance of and activated the DNA damage response pathway in H-bc cells. We also showed that ING5 gene expression is inhibited by miR-193a-3p and is instrumental in miR-193a-3p's role in activating BCa chemoresistance. Our results demonstrate both the role and mechanism of inhibition of BCa chemoresistance by ING5.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496349PMC
http://dx.doi.org/10.18632/oncotarget.3555DOI Listing

Publication Analysis

Top Keywords

ing5 gene
12
dna damage
12
damage response
12
response pathway
12
h-bc cells
12
bca chemoresistance
12
bladder cancer
8
5637 cells
8
chemoresistance
6
cells
5

Similar Publications

INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.

View Article and Find Full Text PDF

HBO1, also known as KAT7 or MYST2, is a crucial histone acetyltransferase with diverse cellular functions. It typically forms complexes with protein subunits or cofactors such as MEAF6, ING4, or ING5, and JADE1/2/3 or BRPF1/2/3, where the BRPF or JADE proteins serve as the scaffold targeting histone H3 or H4, respectively. The histone acetylation mediated by HBO1 plays significant roles in DNA replication and gene expression regulation.

View Article and Find Full Text PDF
Article Synopsis
  • ING4 and ING5 are proteins that help regulate gene expression and are part of histone acetyltransferase complexes involved in heart development.
  • Mutations in genes like KAT6A and KAT6B are linked to heart defects, and studies on mice with disrupted ING4 and ING5 reveal serious developmental issues, including heart defects.
  • The absence of these proteins leads to problems with cell development, structure, and gene expression during early embryonic stages, suggesting mutations in ING5 may contribute to human heart conditions like ventricular septal defects.*
View Article and Find Full Text PDF

In the world, lung cancer is one of the most common malignant cancers and has become the leading cause of death of cancers in China, among which non-small cell lung cancer (NSCLC) accounts for a relatively high proportion, but there is a lack of effective treatment at present. An animal model of NSCLC was established, and BEAS-2b, H1299, Lewis, and T cells were used for subsequent experimental verification. The level of miR-196b-5p was detected by quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

An interpretable Alzheimer's disease oligogenic risk score informed by neuroimaging biomarkers improves risk prediction and stratification.

Front Aging Neurosci

October 2023

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Introduction: Stratification of Alzheimer's disease (AD) patients into risk subgroups using Polygenic Risk Scores (PRS) presents novel opportunities for the development of clinical trials and disease-modifying therapies. However, the heterogeneous nature of AD continues to pose significant challenges for the clinical broadscale use of PRS. PRS remains unfit in demonstrating sufficient accuracy in risk prediction, particularly for individuals with mild cognitive impairment (MCI), and in allowing feasible interpretation of specific genes or SNPs contributing to disease risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!