AI Article Synopsis

Article Abstract

Femtosecond time-resolved photoelectron spectroscopy experiments have been used to compare the electronic relaxation dynamics of aniline and d7-aniline following photoexcitation in the range 272-238 nm. Together with the results of recent theoretical investigations of the potential energy landscape [M. Sala, O. M. Kirkby, S. Guérin and H. H. Fielding, Phys. Chem. Chem. Phys., 2014, 16, 3122], these experiments allow us to resolve a number of unanswered questions surrounding the nonradiative relaxation mechanism. We find that tunnelling does not play a role in the electronic relaxation dynamics, which is surprising given that tunnelling plays an important role in the electronic relaxation of isoelectronic phenol and in pyrrole. We confirm the existence of two time constants associated with dynamics on the 1(1)πσ* surface that we attribute to relaxation through a conical intersection between the 1(1)πσ* and 1(1)ππ* states and motion on the 1(1)πσ* surface. We also present what we believe is the first report of an experimental signature of a 3-state conical intersection involving the 2(1)ππ*, 1(1)πσ* and 1(1)ππ* states.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp01883hDOI Listing

Publication Analysis

Top Keywords

electronic relaxation
16
relaxation dynamics
12
dynamics aniline
8
aniline d7-aniline
8
role electronic
8
11πσ* surface
8
conical intersection
8
11πσ* 11ππ*
8
11ππ* states
8
relaxation
6

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Ethylene glycol dinitrate (EGDN) is a nitrate ester explosive widely used in military ordnance and missile systems. This study investigates the decomposition dynamics of the EGDN cation using a comprehensive approach that combines femtosecond time-resolved mass spectrometry (FTRMS) experiments with electronic structure and molecular dynamics computations. We identify three distinct dissociation time scales for the metastable EGDN cation of approximately 40-60 fs, 340-450 fs, and >2 ps.

View Article and Find Full Text PDF

Guest-Molecule-Induced Glass-Crystal Transition in Organic-Inorganic Hybrid Antimony Halides.

Inorg Chem

January 2025

College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.

The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.

View Article and Find Full Text PDF

Data-Driven Equation-Free Dynamics Applied to Many-Protein Complexes: The Microtubule Tip Relaxation.

Biophys J

January 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States. Electronic address:

Microtubules (MTs) constitute the largest components of the eukaryotic cytoskeleton and play crucial roles in various cellular processes, including mitosis and intracellular transport. The property allowing MTs to cater to such diverse roles is attributed to dynamic instability, which is coupled to the hydrolysis of GTP (guanosine-5'-triphosphate) to GDP (guanosine-5'-diphosphate) within the β-tubulin monomers. Understanding the equilibrium dynamics and the structural features of both GDP- and GTP-complexed MT tips, especially at an all-atom level, remains challenging for both experimental and computational methods because of their dynamic nature and the prohibitive computational demands of simulating large, many-protein systems.

View Article and Find Full Text PDF

Background: Abnormalities of left ventricular (LV) diastolic function are established independent predictors of heart failure (HF) and mortality.

Objectives: To determine whether the association of diastolic function with all-cause mortality is driven by cardiovascular or non-cardiovascular death and if impaired relaxation mitral inflow filling pattern is a risk marker.

Methods: Diastolic function was graded by the Mayo Clinic algorithm utilizing the well characterized prospective Olmsted County Heart Function Study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!