The phase evolution and morphology of the solid state FeF2 conversion reaction with Li has been characterized using angle-resolved X-ray photoelectron spectroscopy (ARXPS). An epitaxial FeF2(110) film was grown on a MgF2(110) single crystal substrate and exposed to atomic lithium in an ultra-high vacuum chamber. A series of ARXPS spectra was taken after each Li exposure to obtain depth resolved chemical state information. The Li-FeF2 reaction initially proceeded in a layer-by-layer fashion to a depth of ∼1.2 nm. Beyond this depth, the reaction front became non-planar, and regions of unreacted FeF2 were observed in the near-surface region. This reaction progression is consistent with molecular dynamics simulations. Additionally, the composition of the reacted layer was similar to that of electrochemically reacted FeF2 electrodes. An intermediary compound FexLi2-2xF2, attributed to iron substituted in the LiF lattice, has been identified using XPS. These measurements provide insight into the atomistics and phase evolution of high purity FeF2 conversion electrodes without contamination from electrolytes and binders, and the results partially explain the capacity losses observed in cycled FeF2 electrodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp01150g | DOI Listing |
J Phys Chem Lett
January 2025
Shanghai Key Laboratory of Magnetic Resonance, Institute of Magnetic Resonance and Molecular Imaging in Medicine, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China.
In traditional operations of all-solid-state lithium metal batteries (ASSLMBs), a small thin lithium metal circular disk is employed as a lithium metal anode (LMA). However, ASSLMBs with a circular-disk LMA often fail in <150 cycles with low capacity retention. In this work, we developed a new ring-shaped LMA to improve cyclability.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China.
Jarosite residues are typical hazardous waste byproducts generated during the iron removal process in hydrometallurgical solutions. The jarosite process is widely used for iron removal in zinc hydrometallurgy; jarosite disposal has become a significant barrier to sustainable development in the industry. During this process, jarosite residues entrain and co-precipitate with heavy metals, which are hazardous but valuable.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, People's Republic of China.
Building anion-derived solid electrolyte interphase (SEI) with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries (LMBs). Herein, we discover that, instead of direct electron transfer from surface polar groups to bis(trifluoromethanesulfonyl)imide (TFSI) for inducing a LiF-rich SEI, the dipole-induced fluorinated-anion decomposition reaction begins with the adsorption of Li ions and is highly dependent on their mobility on the polar surface. To demonstrate this, a single-layer graphdiyne on MXene (sGDY@MXene) heterostructure has been successfully fabricated and integrated into polypropylene separators.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
Groundnut fodder was utilized as a bioresource for the production of cellulases through solid state fermentation (SSF). Aspergillus unguis was initially grown on modified groundnut fodder for cellulase production and the fodder was hydrolyzed by the crude cellulase extract into fermentable hydrolyzate. The highest titer of Filter paperase (FPase), Carboxymethyl cellulase (CMCase), β-glucosidase, and protein content were found to be 11.
View Article and Find Full Text PDFEJNMMI Phys
January 2025
Department of Nuclear Medicine, Rambam Health Care Campus, P.O.B. 9602, 3109601, Haifa, Israel.
Background: A recently released digital solid-state positron emission tomography/x-ray CT (PET/CT) scanner with bismuth germanate (BGO) scintillators provides an artificial intelligence (AI) based system for automatic patient positioning. The efficacy of this digital-BGO system in patient placement at the isocenter and its impact on image quality and radiation exposure was evaluated.
Method: The digital-BGO PET/CT with AI-based auto-positioning was compared (χ, Mann-Whitney tests) to a solid-state lutetium-yttrium oxyorthosilicate (digital-LYSO) PET/CT with manual patient positioning (n = 432 and 343 studies each, respectively), with results split into groups before and after the date of a recalibration of the digital-BGO auto-positioning camera.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!