Stimulation of Dopamine D3 Receptor Attenuates Renal Ischemia-Reperfusion Injury via Increased Linkage With Gα12.

Transplantation

1 Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China. 2 Department of Anesthesiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China. 3 Chongqing Institute of Cardiology, Chongqing, P.R. China. 4 Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD. 5 Department of Physiology, University of Maryland School of Medicine, Baltimore, MD.

Published: November 2015

Background: Renal ischemia-reperfusion (I/R) injury causes renal tubular necrosis, apoptosis, and inflammation leading to acute renal dysfunction. Recent studies have revealed that deletion of Gα12 mitigates the renal damage due to I/R injury. Our previous study showed that activation of dopamine D3 receptor (D3R) increased its linkage with Gα12, and hampered Gα12-mediated stimulation of renal sodium transport. In the present study, we used an in-vivo rat model and an in vitro study of the renal epithelial cell line (NRK52E) to investigate whether or not an increased linkage between D3R and Gα12 contributes to the protective effect of D3R on renal I/R injury.

Methods: For in vivo studies, I/R injury was induced in a rat renal unilateral clamping model. For in vitro studies, hypoxia/reoxygenation and cold storage/rewarming injuries were performed in NRK52E cells. PD128907, a D3R agonist, or vehicle, was administered 15 minutes before clamping (or hypoxia) in both the in vivo or in vitro studies.

Results: In the rat renal unilateral clamping model, pretreatment with PD128907 (0.2 mg/kg, intravenous) protected against renal I/R injury and increased survival rate during a long-term follow-up after 7 days. A decrease in the generation of reactive oxygen species, apoptosis, and inflammation may be involved in the D3R-mediated protection because pretreatment with PD128907 increased renal glutathione and superoxide dismutase levels and decreased malondialdehyde levels in the I/R group. The increase in cytokines (TNF-α, IL-1β, and IL-10) and myeloperoxidase in I/R injured kidney was also prevented with a simultaneous decrease in the apoptosis of the epithelial cells and expression of apoptosis biomarkers in kidney harvested 1 day after I/R injury. The increase in the coimmunoprecipitation between D3R and Gα12 with D3R stimulation paralleled the observed renal protection from I/R injury. Moreover, in vitro studies showed that transient overexpression of Gα12 in the NRK52E cells attenuated the protective effect of PD128907 on hypoxia/reoxygenation injury. The protective effect of PD128907 might be of significance to renal transplantation because cold storage/rewarming induced injury increased lactate dehydrogenase release and decreased cell viability in NRK52E cells. Conversely, in the presence of PD128907, the increased lactate dehydrogenase release and decreased cell viability were reversed.

Conclusions: These results suggest that activation of D3R, by decreasing Gα12-induced renal damage, may exert a protective effect from I/R injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618723PMC
http://dx.doi.org/10.1097/TP.0000000000000762DOI Listing

Publication Analysis

Top Keywords

i/r injury
28
renal
15
injury increased
12
increased linkage
12
nrk52e cells
12
injury
10
i/r
10
dopamine receptor
8
renal ischemia-reperfusion
8
linkage gα12
8

Similar Publications

Electroacupuncture attenuates ferroptosis by promoting Nrf2 nuclear translocation and activating Nrf2/SLC7A11/GPX4 pathway in ischemic stroke.

Chin Med

January 2025

Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.

Objective: Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation.

View Article and Find Full Text PDF

Long non-coding RNA XR008038 promotes the myocardial ischemia/reperfusion injury development through increasing the expressions of galectin-3.

Int J Cardiol

January 2025

Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:

Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.

View Article and Find Full Text PDF

Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research.

View Article and Find Full Text PDF

Recombinant dsAAV9-mediated Endogenous Overexpression of Macrophage Migration Inhibitory Factor Alleviates Myocardial Ischemia-Reperfusion Injury via Activating AMPK and ERK1/2 Signaling Pathways.

Cardiovasc Drugs Ther

January 2025

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.

Purpose: To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury.

Methods: A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively.

View Article and Find Full Text PDF

Purpose: Myocardial ischemia/reperfusion injury (MIRI) is closely associated with ferroptosis. Dexmedetomidine (Dex) has good therapeutic effects on MIRI. This study investigates whether dexmedetomidine (Dex) regulates ferroptosis during MIRI by affecting ferroportin1 (FPN) levels and elucidates the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!