Effects of Water on the Single-Chain Elasticity of Poly(U) RNA.

Langmuir

Key Lab of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu 610031, China.

Published: June 2015

Water, the dominant component under the physiological condition, is a complicated solvent which greatly affects the properties of solute molecules. Here, we utilize atomic force microscope-based single-molecule force spectroscopy to study the influence of water on the single-molecule elasticity of an unstructured single-stranded RNA (poly(U)). In nonpolar solvents, RNA presents its inherent elasticity, which is consistent with the theoretical single-chain elasticity calculated by quantum mechanics calculations. In aqueous buffers, however, an additional energy of 1.88 kJ/mol·base is needed for the stretching of the ssRNA chain. This energy is consumed by the bound water rearrangement (Ew) during chain elongation. Further experimental results indicate that the Ew value is uncorrelated to the salt concentrations and stretching velocity. The results obtained in an 8 M guanidine·HCl solution provide more evidence that the bound water molecules around RNA give rise to the observed deviation between aqueous and nonaqueous environments. Compared to synthetic water-soluble polymers, the value of Ew of RNA is much lower. The weak interference of water is supposed to be the precondition for the RNA secondary structure to exist in aqueous solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b01313DOI Listing

Publication Analysis

Top Keywords

single-chain elasticity
8
bound water
8
rna
6
water
5
effects water
4
water single-chain
4
elasticity
4
elasticity polyu
4
polyu rna
4
rna water
4

Similar Publications

Direct computations of viscoelastic moduli of biomolecular condensates.

J Chem Phys

September 2024

Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA.

Biomolecular condensates are viscoelastic materials defined by time-dependent, sequence-specific complex shear moduli. Here, we show that viscoelastic moduli can be computed directly using a generalization of the Rouse model that leverages information regarding intra- and inter-chain contacts, which we extract from equilibrium configurations of lattice-based Metropolis Monte Carlo (MMC) simulations of phase separation. The key ingredient of the generalized Rouse model is a graph Laplacian that we compute from equilibrium MMC simulations.

View Article and Find Full Text PDF

Here, the unresolved question of why single-chain nanoparticles (SCNPs) prepared from a weak polyelectrolyte (PE) precursor can be synthesized on a large scale in a concentrated solution is addressed, unlike SCNPs obtained from an equivalent neutral (nonamphiphilic) polymer precursor. The combination of the standard elastic single-chain nanoparticles (ESN) model -developed for neutral chains- with the classical scaling theory of PE solutions provides the key. Essentially, the long-range repulsion between electrostatic blobs in a weak PE precursor restricts the cross-linking process during SCNPs formation to the interior of each blob.

View Article and Find Full Text PDF

facsimiles of biomolecular condensates are formed by different types of intrinsically disordered proteins including prion-like low complexity domains (PLCDs). PLCD condensates are viscoelastic materials defined by time-dependent, sequence-specific complex shear moduli. Here, we show that viscoelastic moduli can be computed directly using a generalization of the Rouse model and information regarding intra- and inter-chain contacts that is extracted from equilibrium configurations of lattice-based Metropolis Monte Carlo (MMC) simulations.

View Article and Find Full Text PDF

Nanoscopic Characterization Reveals that Bulk Amorphous Elementary Boron Is Composed of a Ladder-like Polymer with B as the Structural Unit.

ACS Nano

June 2023

School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, People's Republic of China.

As the initially discovered allotrope of boron, amorphous elementary boron (AE-B) has been reported for more than two centuries. Several possible structures of AE-B have been proposed during the past decades. Due to its noncrystalline nature, however, the structure of AE-B has not yet been determined.

View Article and Find Full Text PDF

Chitosan is one of the most prevalent biomass materials, and its physicochemical and biological characteristics, such as solubility, crystallinity, flocculation ability, biodegradability, and amino-related chemical processes, are directly connected to the degree of deacetylation (DD). However, the specifics about the effects of the DD on the characteristics of chitosan are still unclear up to now. In this work, atomic force microscopy-based single-molecule force spectroscopy was used to study the role of the DD in the single-molecule mechanics of chitosan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!