Unique Chiral Interpenetrating d-f Heterometallic MOFs as Luminescent Sensors.

Inorg Chem

†Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, TKL of Metal and Molecule Based Material Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

Published: June 2015

One novel three-dimensional (3D) 3d-4f metal-organic framework (MOF), [TbZn(L)(CO3)2(H2O)]n (1) [HL = 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine], has been successfully synthesized and structurally characterized. Structural analysis shows that compound 1 features a unique chiral interpenetrating 3D framework for the first time. The resulting crystals of 1 are composed of enantiomers 1a (P41) and 1b (P43), as was clearly confirmed by the crystal structure and the corresponding circular dichroism (CD) analyses of eight randomly selected crystals. The investigations on CD spectra based on every single crystal clearly assigned the Cotton effect signals. The powder X-ray diffraction measurement of 1 after being immersed in common solvents reveals that 1 possess excellent solvent stability. Furthermore, luminescent studies imply that 1 displays highly selective luminescent sensing of aldehydes, such as formol, acetaldehyde, and propanal.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.5b00240DOI Listing

Publication Analysis

Top Keywords

unique chiral
8
chiral interpenetrating
8
interpenetrating d-f
4
d-f heterometallic
4
heterometallic mofs
4
mofs luminescent
4
luminescent sensors
4
sensors novel
4
novel three-dimensional
4
three-dimensional 3d-4f
4

Similar Publications

Chiral alkynyl Au(I) complexes: Enhancing chiroptical amplification of circularly polarized luminescence through supramolecular helices.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China. Electronic address:

The construction of helical structures through self-assembly and the exploration of their formation mechanisms not only amplify chiroptical properties but also provide profound insights into the structures and functions of natural helices. In this study, we developed a chiral Au(I) system based on BINAP and alkynyl ligands. The modification of the length or number of alkyl chains at the terminal positions of the alkynyl ligands significantly impacted the self-assembly behavior of the complexes.

View Article and Find Full Text PDF

Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts.

View Article and Find Full Text PDF

Viedma deracemization mechanisms in self-assembly processes.

Phys Chem Chem Phys

January 2025

Laboratoire Softmat, UMR au CNRS no 5623, Université Paul Sabatier, F-31062 Toulouse, France.

Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization/depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis.

View Article and Find Full Text PDF

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Integrating two or more materials to construct membranes with heterogeneous pore structures is an effective strategy for enhancing separation performance. Regularly arranging these heterogeneous pores can significantly optimize the combined effect of the introduced components. Porous Organic Cages (POCs), an emerging subclass of porous materials composed of discrete molecules, assemble to form interconnected pores and exhibit permanent porosity in the solid state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!