Analysis of Diffusion-Controlled Dissolution from Polydisperse Collections of Drug Particles with an Assessed Mathematical Model.

J Pharm Sci

Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802.

Published: September 2015

We introduce a "hierarchical" modeling strategy designed to be systematically extensible to increase the detail of dissolution predictions from polydisperse collections of drug particles and to be placed on firm mathematical and physical foundations with diffusion-dominated dissolution at its core to predict dissolution and the evolution of particle size distribution. We assess the model with experimental data and demonstrate higher accuracy by treating the polydisperse nature of dissolution. A level in the hierarchy is applied to study elements of diffusion-driven dissolution, in particular the role of particle-size distribution width with varying dose level and the influences of "confinement" on the process of dissolution. Confinement influences surface molecular flux, directly by the increase in bulk concentration and indirectly by the relative volume of particles to container. We find that the dissolution process can be broadly categorized within three "regimes" defined by the ratio of total concentration Ctot to solubility CS . Sink conditions apply in the first regime, when C tot /CS<∼0.1. When C tot /CS>∼5 (regime 3) dissolution is dominated by confinement and normalized saturation time follows a simple power law relationship. Regime 2 is characterized by a "saturation singularity" where dissolution is sensitive to both initial particle size distribution and confinement.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.24472DOI Listing

Publication Analysis

Top Keywords

dissolution
10
polydisperse collections
8
collections drug
8
drug particles
8
particle size
8
size distribution
8
analysis diffusion-controlled
4
diffusion-controlled dissolution
4
dissolution polydisperse
4
particles assessed
4

Similar Publications

Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.

View Article and Find Full Text PDF

Coronary artery ectasia (CAE) is an abnormal dilatation of coronary artery segments, often linked with atherosclerosis. This report discusses two cases of CAE presenting as acute coronary syndrome. A 36-year-old man had proximal blockage in the left circumflex artery (LCx) and ectasia in the obtuse marginal artery and left anterior descending artery (LAD), while a 53-year-old male smoker had an ectatic LAD with a substantial thrombus.

View Article and Find Full Text PDF

Sample multiplexing is an emerging method in single-cell RNA sequencing (scRNA-seq) that addresses high costs and batch effects. Current multiplexing schemes use DNA labels to barcode cell samples but are limited in their stability and extent of labeling across heterogeneous cell populations. Here, we introduce Nanocoding using lipid nanoparticles (LNPs) for high barcode labeling density in multiplexed scRNA-seq.

View Article and Find Full Text PDF

All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates Li6PS5X (X = Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.

View Article and Find Full Text PDF

Using High-Entropy Configuration Strategy to Design Spinel Lithium Manganate Cathodes with Remarkable Electrochemical Performance.

Small

January 2025

National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.

Owing to its abundant manganese source, high operating voltage, and good ionic diffusivity attributed to its 3D Li-ion diffusion channels. Spinel LiMnO is considered a promising low-cost positive electrode material in the context of reducing scarce elements such as cobalt and nickel from advanced lithium-ion batteries. However, the rapid capacity degradation and inadequate rate capabilities induced by the Jahn-Teller distortion and the manganese dissolution have limited the large-scale adoption of spinel LiMnO for decades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!