The effect of a single water molecule on the HO2 + NO2 hydrogen abstraction reaction has been investigated by employing B3LYP and CCSD(T) theoretical approaches with the aug-cc-pVTZ basis set. The reaction without water has three types of reaction channels on both singlet and triplet potential energy surfaces, depending on how the HO2 radical approaches NO2. These correspond to the formation of trans-HONO + O2, cis-HONO + O2 and HNO2 + O2. Our calculated results show that triplet reaction channels are favorable and their total rate constant, at 298 K, is 2.01 × 10(-15) cm(3) molecule(-1) s(-1), which is in good agreement with experimental values. A single water molecule affects each one of these triplet reaction channels in the three different reactions of H2O···HO2 + NO2, HO2···H2O + NO2 and NO2···H2O + HO2, depending on the way the water interacts. Interestingly, the water molecule in these reactions not only acts as a catalyst giving the same products as the naked reaction, but also as a reactant giving the product of HONO2 + H2O2. The total rate constant of the H2O···HO2 + NO2 reaction is estimated to be slower than the naked reaction by 6 orders of magnitude at 298 K. However, the total rate constants of the HO2···H2O + NO2 and NO2···H2O + HO2 reactions are faster than the naked reaction by 4 and 3 orders of magnitude at 298 K, respectively. Their total effective rate constant is predicted to be 1.2 times that of the corresponding total rate constant without water at 298 K, which is in agreement with the prediction reported by Li et al. (science, 2014, 344, 292-296).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp00968eDOI Listing

Publication Analysis

Top Keywords

water molecule
16
total rate
16
rate constant
16
single water
12
reaction channels
12
naked reaction
12
reaction
10
ho2 no2
8
no2 hydrogen
8
hydrogen abstraction
8

Similar Publications

Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations.

View Article and Find Full Text PDF

Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release.

Pharmaceutics

January 2025

Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.

Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration.

Pharmaceutics

January 2025

Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands.

Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g.

View Article and Find Full Text PDF

Resins are complex mixtures of natural constituents containing non-volatile and volatile terpenes, in combination with gums and polyphenols, used since ancient times for their medicinal properties. Current research has evidenced their therapeutic value with a plethora of activities. The main limits of resins and their constituents for their clinical use are low water solubility, poor stability and bioavailability.

View Article and Find Full Text PDF

Polyurethane (PU) grouting materials are widely used in underground engineering rehabilitation, particularly in reinforcement and waterproofing engineering in deep-water environments. The long-term effect of complex underground environments can lead to nanochannel formation within PU, weakening its repair remediation effect. However, the permeation behavior and microscopic mechanisms of water molecules within PU nanochannels remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!