Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for the food industry, which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to a reduction of the organoleptic and nutritional properties of food and alternatives are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus, opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra) high pressure homogenization (U)HPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet, and valve temperatures). This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428391PMC
http://dx.doi.org/10.3389/fnut.2014.00015DOI Listing

Publication Analysis

Top Keywords

high pressure
20
ultra high
8
pressure homogenization
8
pressure sterilization
8
sterilization pumpable
8
pumpable foods
8
bacterial spores
8
pressure
6
high
5
homogenization continuous
4

Similar Publications

Advanced energetic composites possess promising properties and wide-ranging applications in explosives and propellants. Nonetheless, most metal-based energetic composites present significant challenges due to surface oxidation and low-pressure output. This study introduces a facile method to develop energetic composites Cutztr@AP through the intermolecular assembly of nitrogen-rich energetic coordination polymers and high-energy oxidant ammonium perchlorate (AP).

View Article and Find Full Text PDF

Increased blood pressure upon standing is considered a cardiovascular risk factor. We investigated the reproducibility of changes in aortic blood pressure, heart rate, stroke volume, cardiac output, and systemic vascular resistance during three passive head-up tilts (HUT) in 223 participants without cardiovascular medications (mean age 46 years, BMI 28 kg/m2, 54% male). Median time gap between the first and the second HUT was 9 weeks and the second and the third HUT 4 weeks.

View Article and Find Full Text PDF

Untangling the role of single-atom substitution on the improvement of the hydrogen evolution reaction of YNS MXene in acidic media.

Phys Chem Chem Phys

January 2025

Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.

The production of hydrogen (H) fuel through electrocatalysis is emerging as a sustainable alternative to conventional and environmentally harmful energy sources. However, the discovery of cost-effective and efficient materials for this purpose remains a significant challenge. In this study, we explore the potential of the transition-metal-substituted YNS MXene as a promising candidate for hydrogen production through the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

Low-temperature on-site in situ high-pressure ultrafast pump-probe spectroscopy instrument.

Rev Sci Instrum

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

We design and construct an ultrafast optical spectroscopy instrument that integrates both on-site in situ high-pressure technique and low-temperature tuning capability. Conventional related instruments rely on off-site tuning and calibration of the high pressure. Recently, we have developed an on-site in situ technique, which has the advantage of removing repositioning fluctuation.

View Article and Find Full Text PDF

An improved endwall-injection technique for examining high-temperature ignition of lubricating oils in shock tubes.

Rev Sci Instrum

January 2025

J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.

Ignition of the lubricating fluid in a mechanical system is a highly undesirable and unsafe condition that can arise from the elevated temperatures and pressures to which the lubricant is subjected. It is therefore important to understand the fundamental chemistry behind its ignition to predict and prevent this condition. Lubricating oils, particularly those with a mineral oil base, are very complex mixtures of thousands of hydrocarbons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!