Kinetochore-localized BUB-1/BUB-3 complex promotes anaphase onset in C. elegans.

J Cell Biol

Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037

Published: May 2015

The conserved Bub1/Bub3 complex is recruited to the kinetochore region of mitotic chromosomes, where it initiates spindle checkpoint signaling and promotes chromosome alignment. Here we show that, in contrast to the expectation for a checkpoint pathway component, the BUB-1/BUB-3 complex promotes timely anaphase onset in Caenorhabditis elegans embryos. This activity of BUB-1/BUB-3 was independent of spindle checkpoint signaling but required kinetochore localization. BUB-1/BUB-3 inhibition equivalently delayed separase activation and other events occurring during mitotic exit. The anaphase promotion function required BUB-1's kinase domain, but not its kinase activity, and this function was independent of the role of BUB-1/BUB-3 in chromosome alignment. These results reveal an unexpected role for the BUB-1/BUB-3 complex in promoting anaphase onset that is distinct from its well-studied functions in checkpoint signaling and chromosome alignment, and suggest a new mechanism contributing to the coordination of the metaphase-to-anaphase transition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442812PMC
http://dx.doi.org/10.1083/jcb.201412035DOI Listing

Publication Analysis

Top Keywords

bub-1/bub-3 complex
12
anaphase onset
12
checkpoint signaling
12
chromosome alignment
12
complex promotes
8
spindle checkpoint
8
role bub-1/bub-3
8
bub-1/bub-3
5
kinetochore-localized bub-1/bub-3
4
complex
4

Similar Publications

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1.

View Article and Find Full Text PDF

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1.

View Article and Find Full Text PDF

Kinetochore-localized BUB-1/BUB-3 complex promotes anaphase onset in C. elegans.

J Cell Biol

May 2015

Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037

The conserved Bub1/Bub3 complex is recruited to the kinetochore region of mitotic chromosomes, where it initiates spindle checkpoint signaling and promotes chromosome alignment. Here we show that, in contrast to the expectation for a checkpoint pathway component, the BUB-1/BUB-3 complex promotes timely anaphase onset in Caenorhabditis elegans embryos. This activity of BUB-1/BUB-3 was independent of spindle checkpoint signaling but required kinetochore localization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!