PPARγ and Wnt Signaling in Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells.

Curr Stem Cell Res Ther

Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Luzhou Medical College, No.2, Jiang Yang Nan Road, Luzhou 646000, P.R.China.

Published: December 2016

Mesenchymal stem cells (MSCs) arise from a variety of tissues, including bone marrow and adipose tissue and, accordingly, have the potential to differentiate into multiple cell types, including osteoblasts and adipocytes. Research on MSCs to date has demonstrated that a large number of transcription factors and ectocytic or intrastitial signaling pathways regulate adipogenic and osteogenic differentiation. A theoretical inverse relationship exists in adipogenic and osteogenic lineage commitment and differentiation, such that signaling pathways induce adipogenesis at the expense of osteogenesis and vice versa. For example, peroxisome proliferator-activated receptor γ(PPARγ), which belongs to the nuclear hormone receptor superfamily of ligand-activated transcription factors, is known to function as a master transcriptional regulator of adipocyte differentiation, and inhibit osteoblast differentiation. Moreover, recent studies have demonstrated that inducers of osteogenic differentiation, such as bone morphogenetic protein (BMP) and Wnt, inhibit the function of PPARγ transactivation during MSC differentiation towards adipocytes through a variety of mechanisms. To illustrate this, the canonical Wnt/β-catenin pathway represses expression of PPARγ mRNA, whereas the noncanonical Wnt pathway activates histone methyltransferases that inhibit PPARγ transactivation via histone H3 lysine 9 (H3K9) methylation of its target genes. The role of microRNAs (miRNAs) in adipogenesis and osteoblastogenesis is garnering increased attention, and studies in this area have shed light on the integration of miRNAs with Wnt signaling and transcription factors such as Runx2 and PPARγ. This review summarizes our current understanding of the mechanistic basis of these signaling pathways, and indicates future clinical applications for stem cell-based cell transplantation and regenerative therapy.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1574888x10666150519093429DOI Listing

Publication Analysis

Top Keywords

adipogenic osteogenic
12
osteogenic differentiation
12
transcription factors
12
signaling pathways
12
wnt signaling
8
mesenchymal stem
8
stem cells
8
pparγ transactivation
8
differentiation
7
pparγ
5

Similar Publications

Background/purpose: Pulp polyp is often eliminated as dental waste. Pulp polyp cells were reported to have high proliferation activity which might be comprised of stem cells. However, little has been known on the presence of stem cells in the pulp polyp.

View Article and Find Full Text PDF

Background: Adipose-derived stem cell (ADSC) transplantation presents a promising approach for osteoporosis (OP) treatment. However, the therapeutic efficacy of ADSCs is hindered by low post-transplantation survival rates and limited capacities for adhesion, migration, and differentiation. Icariin (ICA), the primary active compound of Epimedium, has been shown to promote cell proliferation and induce osteogenic differentiation; however, its specific effects on ADSC osteogenesis and the mechanisms by which ICA enhances osteoporosis treatment through cell transplantation remain inadequately understood.

View Article and Find Full Text PDF

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

PIK3R3 regulates differentiation and senescence of periodontal ligament stem cells and mitigates age-related alveolar bone loss by modulating FOXO1 expression.

J Adv Res

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China. Electronic address:

Introduction: Periodontal diseases are prevalent among middle-aged and elderly individuals. There's still no satisfactory solution for tooth loss caused by periodontal diseases. Human periodontal ligament stem cells (hPDLSCs) is a distinctive subgroup of mesenchymal stem cells, which play a crucial role in periodontal supportive tissues, but their application value hasn't been fully explored yet.

View Article and Find Full Text PDF

The present study explored the possible antiobesogenic and osteoprotective properties of the gut metabolite ginsenoside CK to clarify its influence on lipid and atherosclerosis pathways, thereby validating previously published hypotheses. These hypotheses were validated by harvesting and cultivating 3T3-L1 and MC3T3-E1 in adipogenic and osteogenic media with varying concentrations of CK. We assessed the differentiation of adipocytes and osteoblasts in these cell lines by applying the most effective doses of CK that we initially selected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!